M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -1

SEMESTER -I			
	ASIC DESIGN		
Course Code	22LVS12	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	3:2:0	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Total Marks	100
Credits	04	Exam Hours	3

Course objectives:

- To learn ASIC methodologies and programmable logic cells to implement a function on IC.
- To Analyse back-end physical design flow, including partitioning, floor-planning, placement, and routing.
- To Gain sufficient theoretical knowledge for carrying out FPGA and ASIC designs.

MODULE-1

Introduction to ASICs: Full custom, Semi-custom and Programmable ASICs, ASIC Design flow, ASIC cell libraries.

CMOS Logic: Data path Logic Cells: Data Path Elements, Adders: Carry skip, Carry bypass, Carry save, Carryselect, Conditional sum, Multiplier (Booth encoding), Data path Operators, I/O cells, Cell Compilers.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

MODULE-2

ASIC Library Design: Logical effort: Predicting Delay, Logical area and logical efficiency, Logical paths, Multi stage cells, Optimum delay and number of stages, library cell design.

Programmable ASIC Logic Cells:

MUX as Boolean function generators, Acted ACT: ACT 1, ACT 2 and ACT 3 Logic Modules, Xilinx LCA:XC3000 CLB, Altera FLEX and MAX, Programmable ASIC I/O Cells: Xilinx and Altera I/O Block.

Teaching-	Chalk and talk/Power point presentation
Learning Process	

MODULE-3

Low-level design entry: Schematic entry: Hierarchical design, The cell library, Names, Schematic Icons & Symbols, Nets, Schematic Entry for ASICs, Connections, vectored instances & buses, Edit in place, attributes, Netlist screener.

ASIC Construction: Physical Design, CAD Tools System partitioning, Estimating ASIC size.

Partitioning: Goals and objectives, Constructive Partitioning, Iterative Partitioning Improvement, KL, FM and Look Ahead algorithms.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

MODULE-4

Floor planning and placement: Goals and objectives, Measurement of delay in Floor planning, Floor planning tools, Channel definition, I/O and Power planning and Clock planning.

Placement: Goals and Objectives, Min-cut Placement algorithm, Iterative Placement Improvement, Time driven placement methods, Physical Design Flow.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	
	MODILE 5

Routing: Global Routing: Goals and objectives, Global Routing Methods, Global routing between blocks, Backannotation. Detailed Routing: Goals and objectives, Measurement of Channel Density, Left-Edge Algorithm, Area-Routing Algorithms, Multilevel routing, Timing –Driven detailed routing, Final routing steps, Special Routing, Circuit extraction and DRC.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

PRACTICAL COMPONENT OF IPCC.

SI.NO	Experiments
	Develop and verify a verilog code, exercise a testbench, synthesize, and do the initial timing verification with gate level simulation. Experiments to be done using suitable CAD tools. For the set of experiments listed below, students can make the following flow as a study:
	- Core Constrained flow - Creation of I/O pad frame - Use the created I/O pad frame for Pad constrained design.
	- CTS flow Only for designs which have clock
1	Inverter
2	4-bit binary comparator composed of 2-bit comparators
3	3:8 decoder
4	Flip flop - RS, D, JK, MS, T
5	4-bit counter [Synchronous & Asynchronous counter]
6	4-bit universal shift register
7	4-bit adder/subtractor
8	12-bit register that stores an unsigned integer value
\triangleright	To learn the basic science underlying individual process steps.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

- 1. Two Tests each of 20 Marks
- 2. Two assignments each of 10 Marks/One Skill Development Activity of 20 marks
- 3. Total Marks of two tests and two assignments/one Skill Development Activity added will be CIE for 60 marks, marks scored will be proportionally scaled down to **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of

IPCC for 20 marks.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will be set for 100 marks and marks scored will be scaled down proportionately to 50 marks.
- 2. The question paper will have ten questions. Each question is set for 20 marks.
- 3. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 4. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical

component).

- The minimum marks to be secured in CIE to appear for SEE shall be the 15 (50% of maximum marks-30) in the theory component and 10 (50% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.
- SEE will be conducted for 100 marks and students shall secure 40% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50. (Student has to secure an aggregate of 50% of maximum marks of the course(CIE+SEE)

Suggested Learning Resources:

Books

- 1. Michael John Sebastian Smith, "Application Specific Integrated Circuits", Addison- Wesley Professional, 2005
- 2. Neil H.E. Weste, David Harris, and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Addison Wesley/ Pearson education 3rdedition, 2011
- 3. Vikram Arkalgud Chandrasetty, "VLSI Design: A Practical Guide for FPGA and ASIC Implementations" Springer, ISBN: 978-1-4614-1119-2. 2011
- 4. Rakesh Chadha, Bhasker J, "An ASIC Low Power Primer", Springer, ISBN: 978-14614-4270-7.

5.Peter J. Ashenden Digital Design (Verilog): An Embedded Systems Approach Using Verilog,1st Edition, Kindle Edition

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/watch?v=oZSv68esbgI</u>
- <u>https://www.youtube.com/watch?v=4cPkr1VHu7Q</u>
- <u>https://nptel.ac.in/courses/106105161</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning Real world Problem Solving: Applying the ASIC front end and back end concepts.

Sl. No.	Description	Blooms Level
C01	Describe the concepts of ASIC design methodology, data path elements, logical effort .	L 1, L2
CO2	Analyze the design of ASICs suitable for specific tasks, perform design entry and explain the physical design flow.	L2,L3
CO3	Design data path elements for ASIC cell libraries and compute optimum path delay.	L3
CO4	Create floor plan including partition and routing with the use of CAD algorithms	L3, L4
CO5	Design CAD algorithms and explain how these concepts interact in ASIC design.	L2, L3

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

		SEMESTER -I ADVANCED EMBEDDED SYSTEMS 1		_,
Course Code	1	22LVS13	CIE Marks	50
	s/Week (L:P:SDA)	3:0:2	SEE Marks	50
Total Hours of I		40Hours Theory + 10 -12 slots for		50
Total Hours of Leugogy		Skill Development Activities	Total Marks	100
Credits		04	Exam Hours	
 To kno To und To anal To lear Standa Embedded Sy of an Embedded	erstand basic concepts o w development of Hardv erstand Architecture of A lyse Instruction sets by A n Cortex-M3 programmi rd concepts. /stem: Embedded vs Ger ed System, Memory, Sens	vare Software co-design in Embedded ARM-32 bit Microcontroller. Assembly basics, Instruction list and do ng using C language concepts and Mic Module-1 heral computing system, classification sors, Actuators, LED, Opto coupler, Co y Attributes of Embedded Systems	escription. rocontroller Softwar , application and pu	rpose of ES. Core
Learning Process				
during compil and debugging Teaching- Learning Process	lation, simulators, emula			
1100033		Module-3		
	in the architecture, Ger	-2 technology and applications of AR neral Purpose Registers, Special Reg point presentation		
-		Module-4		
Memory Syst operations ,En	t ems: Memory maps, Mer Idian Mode .	nstruction list and description, usef nory access attributes ,Default Memor		s,Bit band
Teaching- Learning Process	Chalk and talk/Power po	pint presentation		
		Module-5		
	sted Vector interrupt contr C language, CMSIS .	roller design, Systick Timer, Cortex-M3	Programming using	
Teaching- (Learning Process	Chalk and talk/Power po	int presentation		

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- **2.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. K. V. Shibu , "Introduction to embedded systems", TMH education Pvt. Ltd. 2009
- 2. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", Newnes, (Elsevier) 2nd edn, 2010.
- 3. James K. Peckol , "Embedded systems A contemporary design tool", John Wiley, 2008

Web links and Video Lectures (e-Resources):

- <u>https://youtu.be/GaZBpY9Ys1Y</u>
- <u>https://voutu.be/SUusup7FfJo</u>
- https://youtu.be/dHsHP9RrXBw?list=PLJ5C_6qdAvBH-JNRIlupFb44miyx9M8JD
- https://voutu.be/vn7aT9-cYz0
- <u>https://youtu.be/-rWGzFDLnAY</u>

Skill Development Activities Suggested

- 1. Interact with industry (small, medium, and large).
 - 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
 - 3. Involve in case studies and field visits/ fieldwork.
 - 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
 - 5. Handle advanced instruments to enhance technical talent.
 - 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
 - 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc. Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Understand the basic hardware components and their selection method based on the characteristics and attributes of an embedded system.	L2
CO2	Explain the hardware software co-design and firmware design approaches.	L5
CO3	Understand the suitability of the instruction sets of ARM processors to design of embedded systems.	L2
CO4	Acquire the knowledge of the architectural features of ARM CORTEX M3, a 32-bit microcontroller including memory map, interrupts and exceptions.	L5
CO5	Apply the knowledge gained for Programming ARM CORTEX M3 for different applications	L3

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -I

		SEMESTER -I		
		DIGITAL VLSI DESI		<u>.</u>
Course Code		22LVS14	CIE Marks	50
Teaching Hours/Weel		2:0:2	SEE Marks	50
Total Hours of Pedago	ogy	25 Hours Theory + 10 -12 slots for Skill Development Activities	Total Marks	100
Credits		3	Exam Hours	3
To study State	d the operation of ic Characteristics, S	MOS transistor, Scaling and Small Geo Switching Characteristics and Intercor onductor Memories, Dynamic Logic Cir	nnect Effect of MOS	
MOS Transiston T	he Metal Ouida S	Module-1 emiconductor (MOS) Structure, The	MOC System und	lan Eutomal Diag
Structure and Opera Geometry Effects.	tion of MOS Transi	s: Introduction, Resistive-Load Invert	teristics, MOSFET	Scaling and Small-
Teaching-Learning Process	Chalk and talk/P	ower point presentation		
		Module-2		
Calculation of Delay	Times, Inverter D onnect Delay, Swit	stics and Interconnect Effects: Introdu esign with Delay Constraints, Estimat ching Power Dissipation of CMOS Inve ower point presentation	ion of Interconnec	
		Module-3		
Semiconductor Me Memory (SRAM) Teaching-Learning Process		tion, Dynamic Random Access Memo	ory (DRAM), Statio	c Random Access
1100033		Modulo 4		
		Module-4 , Basic Principles of Pass Transistor Ci es, Dynamic CMOS Circuit Techniques,		
Teaching-Learning Process	Chalk and talk/P	ower point presentation		
		Module-5		
Behavior of BJTs, Basi Applications.	ic BiCMOS Circuits	ipolar Junction Transistor (BJT): Strue : Static Behavior, Switching Delay in I		
Teaching-Learning Process	Chalk and talk/P	ower point presentation		

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- **2.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks**

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources: Books

- 1. "Sung Mo Kang & Yusuf Leblebici", CMOS Digital Integrated Circuits: Analysis and Design, Tata McGraw-Hill, Third Edition.
- 2. "Neil Weste and K. Eshraghian", Principles of CMOS VLSI Design: A System Perspective Pearson Education (Asia) Pvt. Ltd. Second Edition, 2000.
- "Wayne, Wolf", Modern VLSI Design: System on Silicon, Prentice Hall PTR/ Pearson Education Second Edition, 1998.
- 4. "Douglas A Pucknell& Kamran Eshraghian", Basic VLSI Design PHI 3rd Edition

Web links and Video Lectures (e-Resources):

- https://www.youtube.com/watch?v=57uTCtSQV50&list=PLH02NKv71TvsSqYwVvUCZwNkY-jUyUHdS
- https://www.youtube.com/watch?v=oL8SKNxEaHs&list=PLLy_2iUCG87Bdulp9brz9AcvW_TnFCUmM

Skill Development Activities Suggested:

- 1. Interact with industry (small, medium, and large).
- 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3. Involve in case studies and field visits/ fieldwork.
- 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5. Handle advanced instruments to enhance technical talent.
- 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc. Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Sl. No.	l of the course the student will be able to : Description	Blooms Level
CO1	Analyse issues of On-chip interconnect Modelling and Interconnect delay calculation.	L4
CO2	Analyse the Switching Characteristics in Digital Integrated Circuits.	L4
CO3	Use the Dynamic Logic circuits in state-of-the-art VLSI chips.	L3
CO4	Study critical issues such as ESD protection, Clock distribution, Clock buffering, and Latch phenomenon	L2
CO5	Use Bipolar and Bi-CMOS circuits in very high speed design.	L3

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) -I

SEMESTER ·

VLSI TESTING				
Course Code	22LVS15	CIE Marks	50	
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50	
Total Hours of Pedagogy	25 hours Theory + 10-12 slots for Skill Development Activities	Total Marks	100	
Credits	03	Exam Hours	03	

Course Learning objectives:

- To know the various types of faults in VLSI based digital circuits.
- To examine various techniques available for efficient fault detection in combinational circuits.
- To learn the techniques to enhance testability of combinational circuits. •
- To learn various techniques that can be used to make sequential circuits easily testable.

To understand test generation and response evaluation techniques used in BIST schemes for VLSI Chips.

Module-1

Faults in digital circuits: Failures and Faults, Modeling of faults, Temporary Faults. Logic Simulation: Applications, Problems in simulation based design verification, types of simulation, The unknown logic values, compiled simulation, event-driven simulation, Delay models, Element evaluation, Hazard Detection, Gate-level event-driven Simulation

Teaching-	Chalk and talk/Power point presentation
Learning Process	

Module-2

Test generation for Combinational Logic circuits: Fault Diagnosis of digital circuits, Test generation techniques for combinational circuits, Detection of multiple faults in Combinational logic circuits.

Teaching-	Chalk and talk/Power point presentation
Learning Process	

Module-3

Testable Combinational logic circuit design: Testable design of multilevel combinational circuits, Synthesis of random pattern testable combinational circuits, Path delay fault testable combinational logic design, Testable PLA design.

Chalk and talk/Power point presentation

Module-4

Design of testable sequential circuits: Controllability and observability, Ad-Hoc design rules for improving testability, design of diagnosable sequential circuits, the scan-path technique for testable sequential circuit design, Level Sensitive Scan Design (LSSD), Random Access Scan Technique, Partial scan, testable sequential circuit design using Non scan Techniques, Cross check, Boundary Scan.

Teaching-	Chalk and talk/Power point presentation		
Learning			
Process			
Module-5			

Built-In Self Test: Test pattern generation for BIST, Output response analysis, Circular BIST, BIST Architectures.

Teaching-	Chalk and talk/Power point presentation
Learning Process	
FIOLESS	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- **2.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Lala Parag K," Digital Circuit Testing and Testability New York", Academic Press 1997.
- 2. Abramovici M, Breuer M A and Friedman A "Digital Systems Testing and Testable Design" D Wiley 1994.
- 3. Vishwani D Agarwal" Essential of Electronic Testing for Digital, Memory and Mixed Signal Circuits" Springer 2002.
- 4. Wang, Wu and Wen Morgan" VLSI Test Principles and Architectures" Kaufmann, 2006.

Web links and Video Lectures (e-Resources):

- 1. <u>https://www.youtube.com/watch?v=O5lyBoWR-PA&list=PLx98Qgh5zPjh6oWI73QfQHZAmAiyt8Wkf</u>
- 2. https://www.youtube.com/watch?v=Abld-fSxjNM&list=PLbMVogVj5nJTClnafWQ9FK2nt3cGG8kCF
- 3. <u>https://www.youtube.com/watch?v=MEaMm423t0w&list=PLZjlBaHNchvOFBWBAtAP9exwQgYpKqsO4&ind</u> <u>ex=1</u>
- 4. VTU e-learning Resources.

Skill Development Activities Suggested

- 2. Interact with industry (small, medium, and large).
 - 3. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
 - 4. Involve in case studies and field visits/ fieldwork.
 - 5. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
 - 6. Handle advanced instruments to enhance technical talent.
 - 7. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
 - 8. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc. Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical

Course o	utcome (Course Skill Set)	
Sl. No.	Description	Blooms Level
C01	Analyze the need for fault modelling and testing of digital circuits	L4
CO2	Generate fault lists for digital circuits and compress the tests for efficiency	L6
CO3	Apply the various techniques to enhance testability of combinational circuits	L3
CO4	Apply boundary scan technique to validate the performance of digital circuits	L3
CO5	Design built-in self-tests for complex digital circuits	L6

		HVLSI DESIGN & EMBEDDED SYS ased Credit System (CBCS) and Ou			
		Education(OBE)SEMESTER -			
		VLSI & ES Lab-1	•		
Course	e Code	22LVSL17	CIE Marks	50	
Teachi	ing Hours/Week (L:P:SDA)	1:2:0	SEE Marks	50	
	Hours of Pedagogy	-	Total Marks	100	
Credit	0.01	02	Exam Hours	03	
Sl.		Experiments			
No		-			
	Part – A: VLSI Digital Desig Experiments to be done usi	g n ng suitable CAD tools & FPGA/CPLI) Boards .		
	FPGA DIGITAL DESIGN				
	VLSI Front End Design prog	rams:			
		using any compiler. Down load the hannels and logic analyzer)/Chipsc			
	1. Write Verilog code for th i. Carry Ripple Add ii. Carry Look Ahea iii. Carry Skip Adde	er d adder			
	ii. Booth Multiplica	on (Signed and Unsigned) tion (Radix-4)			
	 target temperature and temperatures are above for the actual temperature is temperature is more than 5. Develop a Verilog model timing verification with ge 6. Develop a Verilog mode 10ms. Assume the system 7. Design a Mealy and Moo andwithout overlap) any se 	arator r for a thermostat that has two 8-bit the actual temperature in degre freezing (32°F). The detector has tw s more than 5°F below target, and n 5°F above target. of the 7-segment decoder, exercise a gate level simulation. l of a debouncer for a pushbutton n clock frequency is 50MHz. re Sequence Detector using Verilo equence can be specified.	ees Fahrenheit (°F). Assu yo outputs: one to turn a h one to turn a cooler on w a testbench ,synthesize and switch that uses a debour	ume that both eater on when hen the actua d do the initia nce interval o	
		e done using ARM Cortex M3 s - Programming to be done using s	uitable CAD tool and dow	mload the	
	programon to a M3 evaluat			moud the	
	 a) Write an Assembly language program to calculate the sum and display the result for the addition of firstten numbers. SUM = 10+9+8+. +1 b) Write an Assembly language program to store data in RAM 				
	c) Write a C program to output the "Hello World" message using UARTd) Write a C program to operate a buzzer using Cortex M3				
	e) Write a C program to disp	blay the temperature sensed using	Cortex M3.		
	f) Write a C program to cont	trol stepper motor using Cortex M3			

Course outcomes:

At the end of the course the student will be able to:

- 1. Understand the features of CAD tool in VLSI design.
- 2. Design and verify the behavior of digital circuits using digital flow
- 3. Verify the design using a logic analyzer
- 4. Analyse physical design
- 5. Develop Assembly language programs and C language programs for different applications using ARM-Cortex M3 Kit and Keil uVision-4 tool.

Conduct of Practical Examination:

All laboratory experiments are to be included for practical examination.

For examination, one experiment from Part-A and One experiment from Part-B is to be set.

Students are allowed to pick one experiment from the lot.

Strictly follow the instructions as printed on the cover page of answer script for breakup of marks. Change of experiment is allowed only once and Marks allotted to the Procedure part to be made zero.

Reference book : Peter J. AshendenDigital Design (Verilog): An Embedded Systems Approach Using Verilog 1st Edition, Kindle Edition

C		ECH VLSI DESIGN & EMBEDDED SYSTE Credit System (CBCS) and Outcome Bas SEMESTER –II		
		Design of Analog and Mixed Mode VLSI C	ircuits	
Course Code		22LVS21	CIE Marks	50
Teaching Hours/We (L:P:SDA)	eek	2:0:2	SEE Marks	50
Total Hours of Pedagogy 25 Hours Theory +10 - 12 sessions of Skill Total Marks Development Activities. Total Marks			100	
Credits Course Learning o		03	Exam Hours	03
 To study S To learn D To underst 	ingle-Stage a ata Converte tand Single en rchitecture of	physics and operation of MOS devices. d Differential Amplifiers. Specifications and Architectures. led Differential Amplifier and operations. Data converter includes ADC (Analog to Dig Module-1	ital) and DAC(Digital to Analog))
Basic MOS Device models.	Physics: Ger	ral considerations, MOS I/V Characteristic	s, second order effects, MOS dev	rice
Teaching- Learning Process	Chalk and	lk/Power point presentation		
		Module-2		
Single stage Amp	lifier: Basic (oncepts, Common Source stage, Source follo	ower.	
Teaching- Learning Process	Chalk and tal	/Power point presentation		
		Module-3		
Single stage Amp	olifier: comm	n-gate stage, Cascode Stage, choice of devic	e models.	
Teaching- Learning Process		lk/Power point presentation		
	1	Module-4		
Differential Ampl Differential pair wi	0	ended and differential operation, Basic dif Gilbert cell.	ferential pair, Common modere	esponse,
Teaching- Learning Process	Chalk and	lk/Power point presentation		
2000-000-00000		Module-5		
Data Converter ADC, Successive A		:: DAC & ADC Specifications, Current Stee ADC.	ering DAC, Charge Scaling DAC	C, Flash
Teaching- Learning Process	Chalk and	lk/Power point presentation		
Assessment Detai	-	-		
minimum passing : maximum marks o credits allotted to o total of the CIE (Co	mark for the of SEE. A stuc each subject, ntinuous Inte	ternal Evaluation (CIE) is 50% and for S TE is 50% of the maximum marks. Minimu nt shall be deemed to have satisfied the a course if the student secures not less than nal Evaluation) and SEE (Semester End Ex-	um passing marks in SEE is 40 ⁰ academic requirements and ear 50% (50 marks out of 100) in	% of the rned the
 Continuous Interr Three Unit Te Two assignments to attain the C 	ests each of 2 ents each of 2		ty of 40 marks	
		ments/skill Development Activities, will b	e scaled down to 50 marks	

/

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course. **Semester End Examination:** 1) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50. 2) The question paper will have ten full questions carrying equal marks. 3) Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module. 4) Each full question will have a sub-question covering all the topics under a module. 5) The students will have to answer five full questions, selecting one full question from each module Suggested Learning Resources: Books 1) "Behzad Razavi", Design of Analog CMOS Integrated Circuits, TMH 2007. 2) "R. Jacob Baker", CMOS Circuit Design, Layout, and Simulation, Wiley Second Edition 3) "Phillip E. Allen, Douglas R. Holberg", CMOS Analog Circuit Design Oxford University Press Second Edition. Web links and Video Lectures (e-Resources): 1. <u>https://www.youtube.com/watch?v=Q3WYZF5wzgU&list=PLbMVogVi5nJQB44z6h0X02644Vbv70M8</u> 2. <u>https://www.youtube.com/watch?v=311XkpNGs8c&list=PL3pGv4HtqwD0rl7gOoESHR-chSq4OPN5p</u> 3. https://www.youtube.com/watch?v=eLTpf_5di2o&list=PLbMVogVj5nJRlMz5di0g9wBizaU6-egJc 4. <u>https://www.youtube.com/watch?v=dcCj_xAXm4k&list=PLLDC70psjvq5vtrb0EdII4xIKA15ec-Ij</u> 5. VTU e-learning Resources. **Skill Development Activities Suggested:** 1) Interact with industry (small, medium, and large). 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem. 3) Involve in case studies and field visits/ fieldwork. 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry. 5) Handle advanced instruments to enhance technical talent. 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc. 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude. All activities should enhance student's abilities to employment and/or self-employment opportunities,

Course outcomes

/

At the end of the course the student will be able to:

Sl. No.	Description	Blooms Level
C01	Use efficient analytical tools for quantifying the behaviour of basic circuits by	L2, L3
	inspection.	
CO2	Design high-performance, amplifier circuits with the trade-offs between speed,	L3, L4
	precision and power dissipation.	
CO3	Design and study the behaviour of phase-locked-loops for the applications.	L3,L4
CO4	Identify the critical parameters that affect the analog and mixed-signal VLSI circuits' performance	L3
CO5	Perform calculations in the digital or discrete time domain, more sophisticated data converters to translate the digital data to and from inherently analog world.	L5

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -II

	Advanced Embedded Systems 2		
Course Code	22LVS22	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	3:2:0	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 10-12 Lab slots	Total Marks	100
Credits	04	Exam Hours	03

Course Learning objectives:

- To understand the Advanced Programming features in ARM Cortex-M3 microcontrollers
- To understand brief History of Real-Time System and Resources.
- To know Scheduler concepts and timing diagram.
- To examine various types of Memory of Real Time and I/O.

Exception Programming: Using Interrupts, exception/Interrupt handlers, software Interrupts, example of Vector Table relocation, Using SVC, SVC example: Use for Text Message Output Functions, Using SVC with C.

Advanced Programming Features and System Behavior: Running a system with Two separate stacks, Double-Word stack alignment, Nonbase Thread enable, Performance Considerations ,Lockup situations ,FAULTMASK .

Memory Protection unit : MPU registers , setting Up the MPU, Typical setup .

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

MODULE-2

Other Cortex-M3 Features : Power Management , Multiprocessor Communication , self-reset Control .

Debug Architecture: Debugging Features Overview ,Coresight Overview ,Debug Modes ,Debugging events ,Breakpoint in the Cortex-M3 ,accessing register Content in Debug .

Debugging Components : Trace Components: DWT,Trace Components: ITM Trace Components: eTM ,Trace Components: TpIU ,The Flash patch and Breakpoint Unit The advanced high-performance Bus access port , ROM Table

Porting Applications from the ARM7 to the Cortex-M3: System Characteristics, Assembly Language Files, C program Files.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

MODULE-3

Real-Time Systems and Resources: Brief history of Real Time Systems, A brief history of Embedded Systems. System Resources, Resource Analysis, Real-Time Service Utility, Scheduler concepts, Real-Time OS, State transition diagram and tables, Thread Safe Reentrant Functions.

Processing with Real Time Scheduling: Scheduler Concepts, Preemptive Fixed Priority Scheduling Policies with timing diagrams and problems and issues, Feasibility

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

MODULE-4

Processing with Real Time Scheduling (Continued): Rate Monotonic least upper bound, Necessary and Sufficient feasibility, Deadline –Monotonic Policy, Dynamic priority policies, Alternative to RM policy.

Memory and I/O: Worst case execution time, Intermediate I/O, ECC memory ,Multi-resource Services, Blocking, Deadlock and live lock, Critical sections to protect shared resources, Missed deadline, QoS, Reliability and Availability, Similarities and differences, Reliable software, Available software.

Teaching-	Chalk and talk/Power point presentation	
Learning		
Process		
MODULE		

MODULE 5

Firmware Components: The 3 firmware components, RTOS system software mechanisms, Debugging Components, Exceptions, assert, Checking return codes, Single-step debugging, Test access ports, Trace Ports.

Process and Threads: Process and thread creations, Programs related to semaphores, message queue, shared buffer applications involving inter task/thread communication.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

PRACTICAL COMPONENT OF IPCC

SI.NO	Experiments
	Write a C Program for the following
1	To Test 4X4 keypad using Cortex M3 microcontrollers.
2	To Display message on Graphic LCD display using Cortex M3 microcontrollers.
3	To Test working on Internal ADC using Cortex M3 microcontrollers.
4	To Test working of Internal DAC using Cortex M3 microcontrollers.
5	To test working of Interrupt using Cortex M3 microcontrollers.
6	To test on PWM technique using Cortex M3/M4 microcontrollers.
	Write a Assembly language program using suitable CAD software/Tools
7	To link multiple object files and link them together
8	To locking a Mutex
9	Write a SVC handler in C. Use the wrapper code to extract the correct stack frame starting location. The C handler can then use this to extract the stacked PC location and the stacked register values.
10	Write a C-program for FCFS First come first serve using suitable CAD software to Present the Output of CPU Scheduling algorithm.
11	Write a C-program for SJF Shortest job first using suitable CAD software to Present the Output of CPU Scheduling algorithm
12	Write a C-program for Priority using suitable CAD software to Present the Output of CPU Scheduling algorithm

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together

CIE for the theory component of IPCC

1.Two Tests each of 20 Marks

- 1. Two assignments each of 10 Marks/One Skill Development Activity of 20 marks
- 2. Total Marks of two tests and two assignments/one Skill Development Activity added will be CIE for 60 marks, marks scored will be proportionally scaled down to **30 marks**.

CIE for the practical component of IPCC

- On completion of every experiment/program in the laboratory, the students shall be evaluated and marks shall be awarded on the same day. The**15 marks** are for conducting the experiment and preparation of the laboratory record, the other **05 marks shall be for the test** conducted at the end of the semester.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test at the end /after completion of all the experiments shall be conducted for 50 marks and scaled down to 05 marks.

Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for **20 marks**.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours)

- 1. The question paper will be set for 100 marks and marks scored will be scaled down proportionately to 50 marks.
- 2. The question paper will have ten questions. Each question is set for 20 marks.
- 3. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 4. The students have to answer 5 full questions, selecting one full question from each module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper shall include questions from the practical component).

- The minimum marks to be secured in CIE to appear for SEE shall be the 15 (50% of maximum marks-30) in the theory component and 10 (50% of maximum marks -20) in the practical component. The laboratory component of the IPCC shall be for CIE only. However, in SEE, the questions from the laboratory component shall be included. The maximum of 04/05 questions to be set from the practical component of IPCC, the total marks of all questions should not be more than the 20 marks.
- SEE will be conducted for 100 marks and students shall secure 40% of the maximum marks to qualify in the SEE. Marks secured will be scaled down to 50. (Student has to secure an aggregate of 50% of maximum marks of the course(CIE+SEE)

Suggested Learning Resources:

Books.

- 1. K. V. Shibu , "Introduction to embedded systems", TMH education Pvt. Ltd. 2009
- 2. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", Newnes, (Elsevier) 2nd edn, 2010.
- 3. James K. Peckol , "Embedded systems A contemporary design tool", John Wiley, 2008
- 4. Sam Siewert, Real-Time Embedded Systems and Components, Cengage Learning India Edition 2007.
- 5. Dr. K.V.K.K Prasad, Embedded/Real Time Systems, Concepts, Design and Programming, Black Book, , Dream Tech Press, New edition, 2010
- 6. James W S Liu, Real Time System, Pearson Education, 2008

7. Dream Tech Software Team, Programming for Embedded Systems, John Wiley, India Pvt. Ltd., 2008 Web links and Video Lectures (e-Resources):

• ARM Architecture Fundamentals - https://youtu.be/7LqPJGnBPMM

 https://www.youtube.com/watch?v=cP6NxivTY94&list=PLbMVogVj5nJRDS4w20G07l4SepLhuAj9 X&index=17 https://www.youtube.com/watch?v=Kju5UMLC7hg

/

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning Real world Problem Solving: Applying the Cortex M3 Microcontroller concepts

Course outcome (Course Skill Set): At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Develop programs for real time services, firmware and RTOS, using the fundamentals of Real Time Embedded System, real time service utilities, debugging methodologies and optimization techniques.	L6
CO2	Select the appropriate system resources (CPU, I/O, Memory, Cache, ECC Memory, Microcontroller/FPGA/ASIC to improve the system performance.	L4
CO3	Apply priority based static and dynamic real time scheduling techniques for the given specifications.	L3
CO4	Analyze deadlock conditions, shared memory problem, critical section problem, missed deadlines, availability, reliability and QoS.	L4
C05	Develop programs for multithreaded applications using suitable techniquesand data structure	L6

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE) SEMESTER -II

Advances in VLSI Design			
Course Code	22LVS231	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50
Total Hours of Pedagogy	25 Hours Theory + 10 -12 slots for Skill Development Activities	Total Marks	100
Credits	03	Exam Hours	

Course Learning objectives:

/

- To understand Implementation strategies for digital ICS from custom to semicustom Array Design.
- To know performance parameters of CMOS circuits,
- To learn Timing issues of digital system, Memory design and Programmable logic device (PLD).

Module-1

Implementation Strategies For Digital ICS: Introduction, From Custom to Semicustom and Structured Array Design Approaches, Custom Circuit Design, Cell-Based Design Methodology, Standard Cell, Compiled Cells, Macrocells, Megacells and Intellectual Property, Semi-Custom Design Flow, Array-Based Implementation Approaches, Pre-diffused (or Mask-Programmable) Arrays, Pre-wired Arrays, Perspective-The Implementation Platform of the Future.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

Module-2

Coping With Interconnect: Introduction, Capacitive Parasitics, Capacitance and Reliability-Cross Talk, Capacitance and Performance in CMOS, Resistive Parasitics, Resistance and Reliability-Ohmic Voltage Drop, Electromigration, Resistance and Performance-RC Delay, Inductive Parasitics, Inductance and Reliability-Voltage Drop, Inductance and Performance-Transmission Line Effects, Advanced Interconnect Techniques, Reduced-Swing Circuits, Current-Mode Transmission Techniques, Perspective: Networks-on-a-Chip.

Teaching-	Chalk and talk/Power point presentation
Learning Process	

Module-3

Timing Issues In Digital Circuits: Introduction, Timing Classification of Digital Systems, Synchronous Interconnect, Mesochronous interconnect, Plesiochronous Interconnect, Asynchronous Interconnect, Synchronous Design — An In-depth Perspective, Synchronous Timing Basics, Sources of Skew and Jitter, Clock-Distribution Techniques, Latch-Base Clocking, Self-Timed Circuit Design, Self-Timed Logic - An Asynchronous Technique, Completion-Signal Generation, Self-Timed Signaling, Practical Examples of Self- Timed Logic, Synchronizers and Arbiters, Synchronizers-Concept and Implementation, Arbiters, Clock Synthesis and Synchronization Using a Phase-Locked Loop, Basic Concept, Building Blocks of a PLL.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

Module-4

Designing Memory and Array Structures: Introduction, Memory Classification, Memory Architectures and Building Blocks, The Memory Core, Read-Only Memories, Nonvolatile Read-Write Memories, Read-Write Memories (RAM), Contents-Addressable or Associative Memory (CAM), Memory Peripheral Circuitry, The Address Decoders, Sense Amplifiers, Voltage References, Drivers/Buffers, Timing and Control.

Teaching-	Chalk and talk/Power point presentation
Learning	

Process

Module-5

Designing Memory and Array Structures: Memory Reliability and Yield, Signal-to-Noise Ratio, Memory yield, Power Dissipation in Memories, Sources of Power Dissipation in Memories, Partitioning of the memory, Addressing the Active Power Dissipation, Data retention dissipation, Case Studies in Memory Design: The Programmable Logic Array (PLA), A 4Mbit SRAM, A 1 Gbit NAND Flash Memory, Perspective: Semiconductor Memory Trends and Evolutions.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Jan M Rabey, AnanthaChandrakasan, Borivoje Nikolic, "Digital Integrated Circuits-A Design Perspective", PHI, 2ndEdition
- 2. M. Smith, "Application Specific Integrated circuits", Addison Wesley, 1997
- 3. Wang, Wu and Wen, "VLSI Test Principles and Architectures", Morgan Kaufmann, 2006
- 4. H. Veendrick, "MOS ICs: From Basics to ASICs", Wiley-VCH, 1992

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/watch?v=kcJi8gJ1kBo&list=PLbMVogVj5nJTDr6KqQXNcxCvooSMnBu</u> <u>Xj</u>
- <u>https://www.youtube.com/watch?v=ZxhaktnuBk8&list=PLbMVogVj5nJTDr6KqQXNcxCvooSMnBuXj&index=2</u>

Skill Development Activities Suggested

- 1. Interact with industry (small, medium, and large).
 - 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
 - 3. Involve in case studies and field visits/ fieldwork.
 - 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
 - 5. Handle advanced instruments to enhance technical talent.
 - 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
 - 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc. Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical

Sl. No.	Description	Blooms Level
CO1	Apply design automation for complex circuits using the different implementation methodology like custom versus semi-custom, hardwired versus fixed, regular array versus ad-hoc.	L3
CO2	Use the approaches to minimize the impact of interconnect parasitics on performance, power dissipation and circuit reliability	L5
CO3	Impose the ordering of the switching events to meet the desired timing constraints using synchronous, clocked approach.	L3
CO4	Infer the reliability of the memory	L6
C05	Understand the role of peripheral circuitry such as the decoders, sense amplifiers, drivers and control circuitry in the design of reliable and fast memories	L2

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

		SEMESTER -II Nanoelectronics		-
Course Code		22LVS232	CIE Marks	50
	rs/Week (L:P:SDA)	2:0:2	SEE Marks	50
Total Hours of		25 Hours Theory + 10 -12 slots for		100
	0.01	Skill Development Activities	Total Marks	100
Credits		03	Exam Hours	
 To un To lea To an To un Introduction electronic ind electronic pr electron mod of nanometer	rn Quantum confinement alyze different fabrication derstand various types of n: Overview of nanoscie dustry. Moores' law and co operties of atoms and so els and energy bands, cry length scale, Fabrication	no science and engineering. t in semiconductor nanostructures. process and physical process. methods of measuring properties and Module-1 nce and engineering. Development ontinued miniaturization, Classificatio lids: Isolated atom, Bonding between rstalline solids, Periodicity of crystal la methods: Top down processes, Botto s, ordering of nanosystems. pint presentation	milestones in mico n of Nanostructure atoms, Giant mole attices,Electronic co	rofabrication and s, cular solids, Free onduction, effects
diffraction te	chniques: bulk and surfac	Module-2 oscopic techniques, Field ion microsco e diffraction techniques, spectroscopy	techniques: photo	n, radiofrequency,
		filing: electron, mass, Ion beam, Refle agnetic, thermal properties r point presentation	ctrometry, Technic	ques for property
Learning Process	,			
1100033		Module-3		
semiconduct electronic de	or nanostructures: quant nsity of states.	ictures : overview of semiconductor um wells, quantum wires, quantum d olecules, Carbon Clusters, Carbon 1	ots, super-lattices,	band offsets, and
Teaching-	Chalk and talk/Power p	oint presentation		
Learning Process	, F			
		Module-4		
and etching electrostatica	cleaved-edge over greatly induced dots and wir	ts of ideal semiconductor, epitaxial gr owth, growth of vicinal substrates res, Quantum well width fluctuations, quantum dots, self-assembly techniqu	, strain induced thermally anneale	dots and wires,
Teaching- Learning	Chalk and talk/Power p	oint presentation		
Process		Module-5		
transport, Inte	er band absorption, intra	g, quantum hall effect, resonant tunne band absorption, Light emission pro	cesses, phonon bo	ttleneck, quantum
		s, coherence and dephasing, characte	rization of semico	nductor
	s: optical electrical and st			
Teaching- Learning Process	Chalk and talk/Power po	int presentation		

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- **2.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.**

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources: Books

- 1. Ed Robert Kelsall, Ian Hamley, Mark Geoghegan, "Nanoscale Science and Technology", John Wiley, 2007
- 2. Charles P Poole, Jr, Frank J Owens, "Introduction to Nanotechnology", John Wiley Copyright 2006, Reprint 2011.
- 3. Ed William A Goddard III, Donald W Brenner, Sergey E. Lyshevski, Gerald J Iafrate, "Hand Book of Nanoscience Engineering and Technology", CRC press, 2003.

Web links and Video Lectures (e-Resources):

- https://www.youtube.com/watch?v=wdNFCWLuC10&list=PLbMVogVj5nJT8RG5Q4CpsJXiGqXE6t8N1
- <u>https://www.youtube.com/watch?v=0q5TweDVyKQ</u>

Skill Development Activities Suggested

- 1. Interact with industry (small, medium, and large).
 - 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
 - 3. Involve in case studies and field visits/ fieldwork.
 - 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
 - 5. Handle advanced instruments to enhance technical talent.
 - 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
 - 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc. Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

At the end	At the end of the course the student will be able to :		
Sl. No.	Description	Blooms Level	
C01	Know the principles behind Nanoscience engineering and Nanoelectronics.	L2	
CO2	Apply the knowledge to prepare and characterize nanomaterials.	L3	
CO3	Know the effect of particles size on mechanical, thermal, optical and electrical properties of nanomaterials.	L2	
CO4	Design the process flow required to fabricate state of the art transistor technology.	L6	
C05	Analyze the requirements for new materials and device structure in the future	L4	

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE) SEMESTER -II

Course Code	22LVS233	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50
Total Hours of Pedagogy	25 Hours Theory + 10 -12 slots for Skill Development Activities	Total Marks	100
Credits	03	Exam Hours	

- To know standard cell library with timing model and delay model.
- To study delay calculations and timing verification concepts of flip-flops.

Module-1

Introduction: Nanometer Designs, What is Static Timing Analysis? Why Static Timing Analysis?, Crosstalk and Noise, Design Flow, CMOS Digital Designs, FPGA Designs, Asynchronous Designs, STA at Different DesignPhases, Limitations of Static Timing Analysis, Power Considerations, Reliability Considerations

STA Concepts: CMOS Logic Design, Basic MOS Structure, CMOS Logic Gate, Standard Cells, Modeling of CMOS Cells, Switching Waveform, Propagation Delay, Slew of a Waveform, Skew between Signals, Timing Arcs and Unateness, Min and Max Timing Paths, Clock Domains, Operating Conditions

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

Module-2

Standard Cell Library: Pin Capacitance, Timing Modeling, Linear Timing Model, Non-Linear Delay Model, Example of Non-Linear, Delay Model Lookup, Threshold Specifications and Slew Derating Timing Models -Combinational Cells, Delay and Slew Models, Positive or Negative Unate, General Combinational Block, Timing Models - Sequential Cells, Synchronous Checks: Setup and Hold, Example of Setupand Hold Checks, Negative Values in Setup and Hold Checks, Asynchronous Checks, Recovery and Removal Checks Pulse Width Checks, Example of Recovery, Removal and Pulse Width Checks, Propagation Delay, State- Dependent Models XOR,XNOR and Sequential Cells, Interface Timing Model for a Black Box, Advanced Timing Modeling, Receiver Pin Capacitance, Specifying Capacitance at the Pin Level, Specifying Capacitance at the Timing Arc Level, Output Current, Models for Crosstalk Noise Analysis, DC Current, Output Voltage, Propagated Noise, Noise Models for Two-Stage Cells, Noise Models for Multi-stage and sequential Cells, Other Noise Models, Power Dissipation Modeling, Active Power,

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

Module-3

Interconnect Parasitics: RLC for Interconnect, Wireload Models, Interconnect Trees, Specifying Wire load Models, Representation of Extracted Parasitic, Detailed Standard Parasitic Format ,Reduced Standard Parasitic Format, Standard Parasitic Exchange Format, Representing Coupling Capacitances, Hierarchical Methodology, Block Replicated in Layout, Reducing Parasitic for Critical Nets, Reducing Interconnect Resistance, Increasing Wire Spacing, Parasitics for Correlated Nets.

Delay Calculation: Overview, Delay Calculation Basics, Delay Calculation with Interconnect, Pre-layout Timing, Post-layout Timing, Cell Delay using Effective Capacitance, Interconnect Delay, Elmore Delay, Higher Order Interconnect Delay Estimation, Full Chip Delay Calculation, Slew Merging, Different Slew Thresholds, Different Voltage Domains, Path Delay Calculation, Combinational Path Delay, Path to a Flip-flop, Input to Flip-flop Path, Flip-flop to Flip-flop Path, Multiple Paths, Slack Calculation.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	
	Module-4

Configuring the STA Environment: What is the STA Environment? Specifying Clocks, Clock Uncertainty, Clock Latency, Generated Clocks, Example of Master Clock at Clock Gating Cell Output, Generated Clock using Edge and Edge shift Options, Generated Clock using Invert Option, Clock Latency for Generated Clocks, Typical Clock Generation Scenario, Constraining Input Paths, Constraining Output Paths, Example A, Example B, Example Timing Path Groups, Modeling of External Attributes, Modeling Drive Strengths, Modeling Capacitive Load, Design Rule Checks, Virtual Clocks,

Teaching-	Chalk and talk/Power point presentation	
Learning Process		
Madala F		

Module-5

Timing Verification: Setup Timing Check, Flip-flop to Flip-flop Path, Input to Flip-flop Path, Input Path with Actual Clock, Flip flop to Output Path, Input to Output Path, Frequency Histogram, Hold Timing Check, Flip-flop to Flip-flop Path, Hold Slack Calculation, Input to Flip-flop Path, Flip-flop to Output Path, Flip-flop to Output Path, Katual Clock, Input to Output Path, Multicycle Paths, Crossing Clock Domains, False Paths, Half- Cycle Paths, Removal Timing Check, Recovery Timing Check, Timing across Clock Domains, Slow to FastClock Domains, Fast to Slow Clock Domains, Half-cycle Path - Case 1, Half-cycle Path - Case 2, Fast to Slow Clock Domain, Slow to FastClock Domain, Slow to Fast Clock Domain,

Teaching-
LearningChalk and talk/Power point presentationProcess

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- **2.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs
- The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

1. J. Bhasker, R Chadha, "Static Timing Analysis for Nanometer Designs: A Practical Approach", Springer 2009 Reference Books

2. Sridhar Gangadharan, Sanjay Churiwala, "Constraining Designs for Synthesis and Timing Analysis – A Practical Guide to Synopsis Design Constraints (SDC)", Springer, 2013

3. Naresh Maheshwari and SachinSapatnekar, "Timing Analysis and Optimization of Sequential Circuits", Springer Science and Business Media, 1999

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/watch?v=KlUn2GjN0fY&list=PLYdInKVfi0Ka5c6kraib5qiCFhPWE9G6e</u>
- <u>https://www.youtube.com/watch?v=yYR8BzysTmM&list=PLYdInKVfi0Ka5c6kraib5qiCFhPWE9G6e&ind</u> <u>ex=2</u>

Skill Development Activities Suggested

- 1. Interact with industry (small, medium, and large).
 - 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
 - 3. Involve in case studies and field visits/ fieldwork.
 - 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
 - 5. Handle advanced instruments to enhance technical talent.
 - 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
 - 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc. Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Evaluate the delay of any given digital circuits.	L5
CO2	Prepare the resources to perform the static timing analysis using EDA tool.	L6
CO3	Prepare timing constraints for the design based on the specification.	L6
CO4	Generate the timing analysis report using EDA tool for different checks.	L5, L6
C05	Perform verification and analyse the generated report to identify critical issues and bottleneck for the violation and suggest the techniques to make the design to meet timing	L3

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -III

		SEMESTER -III				
	Embedd	ed Linux System Design and Develo		50		
Course Code		22LVS234	CIE Marks	50		
	rs/Week (L:P:SDA)	2:0:2	SEE Marks	50		
Total Hours of	f Pedagogy	25 Hours Theory + 10 -12 slots for Skill Development Activities	Total Marks	100		
Credits	redits 03 Exam Hours 03					
 To unde To Gain To Anal To learn To learn To learn To learn To learn To learn Sequence, GN Teaching- Learning 	the knowledge of Board S yse the memory requirem in the embedded drivers and in the porting applications f n: History of Embedded L sked Questions, Embedded	ents for design. ad kernel modules. from traditional RTOS Module-1 inux, Why Embedded Linux, Embedd d Linux Distributions, Porting Roadm bedded Linux, Linux Kernel Archite in.	led Linux Versus E ap.			
Process						
PCI Subsyster	m, Timers, UART, Power M		y Map, Interrupt M	anagement, The		
Teaching- Learning Process	Chalk and talk/Powe					
for NOR Flas						
1100000		Module-4				
Embedded I Timer, Kernel		er, Ethernet Driver , I2C Subsystem o	n Linux, USB Gadg	ets, Watchdog		
Teaching- Learning Process	Chalk and talk/Power po	pint presentation				
		Module-5				
	lications : Architectural (tem Porting Layer (OSPL),	Comparison, Application Porting Road	dmap, Programmin	ig with Pthreads,		
Teaching- Learning Process	Chalk and talk/Power poi	int presentation				

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.**

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources: Books

- 1. P.Raghavan, Amol Lad, Sriram Neelakandan" Embedded Linux System Design And Development", Auerbach Publications, Taylor & Francis Group, 2006
- 2. Karim Yaghmour, Jon Masters, Gilad BenYossef, and Philippe Gerum "Building Embedded Linux Systems" O'Reilly publications, 2 nd edition

Web links and Video Lectures (e-Resources):

<u>https://www.youtube.com/watch?v=9vsu67uMcko</u>

Skill Development Activities Suggested

- 1. Interact with industry (small, medium, and large).
- 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3. Involve in case studies and field visits/ fieldwork.
- 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5. Handle advanced instruments to enhance technical talent.
- 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7. Work on different software/s (tools) to simulate, analyse and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Understand the embedded Linux development environment.	L1,L2
CO2	Understand and create Linux BSP for a hardware platform	L1,L2
CO3	Understand the Linux model for embedded storage and write drivers and applications for the same.	L1,L2
CO4	Understand various embedded Linux drivers such as serial, I2C, and so on.	L1,L2
CO5	Port applications to embedded Linux from a traditional RTOS	L3

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

II Semester	VLSI Process Technology					
Course Code	22LVS235	CIE Marks	50			
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50			
Total Hours of Pedagogy	25 Hours Theory + 10 -12 slots for Skill	Total Marks	100			
Condition	Development Activities	Exam Hours	100			
Credits Course Learning objectives:	03	Exam Hours				
	cal and practical aspect of very large scale	o integration				
	and material properties with SOI technolo	ogy.				
0 1	bhy with different techniques.					
	e properties and the diagnostic techniqu					
• To understand implantation	n process and applicability of metallization	on scheme.				
	Module-1					
Crystal Growth and Wafer Pren	aration: Introduction, Electronic-Grade S	ilicon. Czochral	ski			
Crystal Growing.						
Epitaxy: Introduction, Vapour-Ph	nase Epitaxy.					
	wer point presentation					
Learning Process	r r					
	Module-2					
Lithography: Introduction, Optics	al Lithography, Electron Lithography, X-ra	y Lithography,	Ion			
Lithography.						
Teaching- Chalk and talk/Po	wer point presentation					
Learning Process	wei point presentation					
U	Module-3					
Reactive Plasma Etching: Introduction, Plasma Properties, Feature-Size Control and Anisotropic Etch Mechanisms, Other Properties of Etch Processes, Reactive Plasma-Etching Techniques and Equipment, Specific Etch Processes. Teaching- Chalk and talk/Power point presentation						
Learning Process	Module-4					
Ion Implantation : Introduction, Range Theory, Implantation Equipment, Annealing, Shallow Junctions, High-Energy Implantation.						
	wer point presentation					
Learning Process	Module-5					
Motollization Introduction M		oicos Dhrodal	Vara			
	etallization Applications, Metallization Ch	orces, Physical	vapor			
Deposition, Patterning, Metalliza	tion problems .					
Teaching-LearningChalk and talk/PProcess	ower point presentation					
Assessment Details (both CIE and SEI	E)					
The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.						
Continuous Internal Evaluation:						
1) Three Unit Tests each of 20 Marks						
2) Two assignments each of 20 Marks or one Skill Development Activity of 40 marks						

to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.**

Semester End Examination:

- 1) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2) The question paper will have ten full questions carrying equal marks.
- 3) Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4) Each full question will have a sub-question covering all the topics under a module.
- 5) The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. S. M. Sze, "VLSI Technology", McGraw-Hill, Second Edition.
- 2. S.K. Ghandhi, "VLSI Fabrication Principles", John Wiley Inc., New York, 1994, Second Edition.

Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=EbWmRJeNM9w&list=PLbMVogVj5nJSkDoV3lpZpZUEnzNIRsDpl

Skill Development Activities Suggested:

- 1) Interact with industry (small, medium, and large).
- 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3) Involve in case studies and field visits/ fieldwork.
- 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5) Handle advanced instruments to enhance technical talent.
- 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcomes (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Understand the major steps in the fabrication process of VLSI circuits.	L1,L2
CO2	Illustrate particular processing steps in achieving required parameters.	L1
CO3	Apply standard engineering for different lithographic methods.	L3
CO4	Analyse the specific plasma process used in semiconductor industry	L4,L5
C05	Apply implantation process for VLSI devices and discuss the limitations of various metallization schemes.	L3,L4

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE) SEMESTER -II

		SEMESTER -II		
II Semester		Low Power VLSI Design		
Course Code		22LVS241	CIE Marks	50
Teaching Hours/Wee (L:P:SDA)	ek	2:0:2	SEE Marks	50
Total Hours of Pedagogy		25 Hours Hours Theory + 10-12 sessions for SkillDevelopment Activities	Total Marks	100
Credits		3	Exam Hours	03
-	e-of-the art ap	proaches of power estimation and reduction. ation at various levels of design		
		Module-1		
CMOS leakage curre	nt, static cu analysis : SI	wer VLSI chips, charging and discharging capacitance rrent, basic principles of low power design, low powe PICE circuit simulation, Monte Carlo simulation.		n
Teaching- Learning Process	Chalk and	talk method / PowerPoint Presentation		
		Module-2		
	-	zing, equivalent pin ordering, network restructuring r digital cell library, adjustable device threshold volta		oecial
Teaching- Learning Process	Chalk and	talk method / PowerPoint Presentation		
	I	Module-3		
		nal gating, logic encoding, state machine encoding wer dissipation in clock distribution, single driver		c. Low
Teaching-	Chalk and	talk method / PowerPoint Presentation		
Learning Process				
		Module-4		
Low power Archite transformation.	ecture & Sys	stems: Power & performance management, switching	gactivity reduction, flow	y graph
		ntroduction, sources and reductions of power dissip	oation in memory subsy	stem.
Teaching- Learning Process	Chalk and	talk method / PowerPoint Presentation		
		Module-5		
optimization, Archit	ectural leve	vel Methodologies : Introduction, design flow, Algo l estimation & synthesis. : Adiabatic computation, Asynchronous circuits.	orithmic level analysis &	&
Teaching- Learning Process		talk method / PowerPoint Presentation		
Assessment Detail	s (both CIE	and SEE)		-
minimum passing n maximum marks of credits allotted to e	nark for the SEE. A stuc ach subject, tinuous Inte	Internal Evaluation (CIE) is 50% and for Semester CIE is 50% of the maximum marks. Minimum passin dent shall be deemed to have satisfied the academic course if the student secures not less than 50% (50 ernal Evaluation) and SEE (Semester End Examination on:	ng marks in SEE is 40% requirements and earr marks out of 100) in th	o of the ned the
1) Three Unit Tes	ts each of 2		narks	
to attain the CO The sum of three tes	Ds and POs sts, two assig	gnments/skill Development Activities, will be scaled of r is designed to attain the different levels of Bl	down to 50 marks	er the
outcome defined fo Semester End Exar	or the cour	_	us p	

- 1) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2) The question paper will have ten full questions carrying equal marks.
- 3) Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4) Each full question will have a sub-question covering all the topics under a module.

5) The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1) Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic, 1998.
- 2) Jan M. Rabaey, Massoud Pedram, "Low Power Design Methodologies", Kluwer Academic, 2010.
- 3) Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2000
- 4) A. P. Chandrasekaran and R. W. Broadersen, "Low power digital CMOS design", Kluwer Academic, 1995.

5) A Bellamour and M I Elmasri, "Low power VLSI CMOS circuit design", Kluwer Academic, 1995.

Web links and Video Lectures (e-Resources):

- 1. https://archive.nptel.ac.in/courses/106/105/106105034/
- 2. <u>https://www.youtube.com/watch?v=TF001JAll2Y</u>
- 3. <u>https://www.youtube.com/watch?v=ORtlxpW_LMU</u>

Skill Development Activities Suggested

- 1) Interact with industry (small, medium, and large).
- 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3) Involve in case studies and field visits/ fieldwork.
- 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5) Handle advanced instruments to enhance technical talent.
- 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Identify the sources of power dissipation in CMOS circuits.	L1, L2
CO2	Perform power analysis using simulation-based approaches and probabilistic analysis.	L2, L3
CO3	Use optimization and trade-off techniques that involve power dissipation of digital circuits.	L2, L3
CO4	Make the power design a reality by making power dimension an integral part of the design process.	L2, L3
CO5	Use practical low power design techniques and their analysis at various levels of design abstraction and analyse how these are being captured in the latest design automation environments.	L3, L4

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

		SEMESTER -II		
		SoC Design	-	
Course Code		22LVS242	CIE Marks	50
Teaching Hours/W		2:0:2	SEE Marks	50
Total Hours of Pedagogy		25 Hours Theory + 10-12		
		sessions for Skill Development	Total Marks	100
Cardita		Activities	F	2
Credits		03	Exam Hours	3
Course Learning	obiectives:			
-	-	nd implementation of the 3- and 5-sta	age pipeline ARM pro	cessor cores
	0	level language (in this case, C) in app	• • • •	
		debugging systems in embedded pro	=	
	board-level systems.	debugging systems in embedded pre		ne production
-	-	anna ann ann af man am biananabh		
• To learn d	interent ARM integer (cores, concept of memory hierarchy	and management.	
	17 1	Module-1	F 1. A	DM ' '
		on : 3-stage pipeline ARM organization nentation, The ARM coprocessor into		RM organization,
	· 1	i, Exceptions, Conditional execution,		urith Link (D. DL)
		(BX, BLX), Software Interrupt (SWI)		WIUI LIIIK (D, DL),
Teaching-	-	er point presentation	•	
Learning	unaik and taik/ r 000	er point presentation		
Process				
		Module-2		
The ADM In store	tion Cot (Continued		in he in star stiens Ca	
) Data processing instructions, Mult		
		ord and unsigned byte data transfer i		
		ister transfer instructions, Swap me		
Status register in				
		sfer instructions, General register to		
Coprocessor instru	ictions, Coprocessor d	lata operations, Coprocessor data tra	ansfers, Coprocessor	register transfers,
Coprocessor instru Breakpoint instruc	ctions, Coprocessor d ction (BRK - architect	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp	ansfers, Coprocessor	register transfers,
Coprocessor instru Breakpoint instruc Teaching-	ictions, Coprocessor d	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp	ansfers, Coprocessor	register transfers,
Coprocessor instru Breakpoint instruc Teaching- Learning	ctions, Coprocessor d ction (BRK - architect	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp	ansfers, Coprocessor	register transfers,
Coprocessor instru Breakpoint instruc Teaching-	ctions, Coprocessor d ction (BRK - architect	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation	ansfers, Coprocessor	register transfers,
Coprocessor instru Breakpoint instruc Teaching- Learning Process	ctions, Coprocessor d ction (BRK - architect Chalk and talk/Powe	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3	ansfers, Coprocessor pace, Memory faults, A	register transfers, ARM architecture
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su	ictions, Coprocessor d ction (BRK - architect Chalk and talk/Powe ipport for High-Leve	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp er point presentation <u>Module-3</u> el Languages: Abstraction in softw	ansfers, Coprocessor bace, Memory faults, A	register transfers, ARM architecture es, Floating-point
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su data types, The	actions, Coprocessor d ction (BRK - architectu Chalk and talk/Powe apport for High-Leve ARM floating-point a	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp er point presentation <u>Module-3</u> el Languages: Abstraction in softw architecture, Expressions, Condition	ansfers, Coprocessor bace, Memory faults, A	register transfers, ARM architecture es, Floating-point
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su data types, The	ictions, Coprocessor d ction (BRK - architect Chalk and talk/Powe ipport for High-Leve	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp er point presentation <u>Module-3</u> el Languages: Abstraction in softw architecture, Expressions, Condition	ansfers, Coprocessor bace, Memory faults, A	register transfers, ARM architecture es, Floating-point
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su data types, The	actions, Coprocessor d ction (BRK - architectron Chalk and talk/Powe Ipport for High-Leve ARM floating-point a of memory, Run-time	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp pr point presentation <u>Module-3</u> el Languages: Abstraction in softw architecture, Expressions, Condition	ansfers, Coprocessor bace, Memory faults, A	register transfers, ARM architecture es, Floating-point
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching-	actions, Coprocessor d ction (BRK - architectron Chalk and talk/Powe Ipport for High-Leve ARM floating-point a of memory, Run-time	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages : Abstraction in softw architecture, Expressions, Condition environment.	ansfers, Coprocessor bace, Memory faults, A	register transfers, ARM architecture es, Floating-point
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning	actions, Coprocessor d ction (BRK - architectron Chalk and talk/Powe Ipport for High-Leve ARM floating-point a of memory, Run-time	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages : Abstraction in softw architecture, Expressions, Condition environment.	ansfers, Coprocessor bace, Memory faults, A	register transfers, ARM architecture es, Floating-point
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning	actions, Coprocessor d ction (BRK - architectron Chalk and talk/Powe Ipport for High-Leve ARM floating-point a of memory, Run-time	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation	ansfers, Coprocessor bace, Memory faults, A	register transfers, ARM architecture es, Floating-point
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning Process	ctions, Coprocessor d ction (BRK - architectr Chalk and talk/Powe apport for High-Lev ARM floating-point a of memory, Run-time Chalk and talk/Powe	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4	ansfers, Coprocessor pace, Memory faults, <i>i</i> are design, Data typ nal statements ,Loop	register transfers, ARM architecture es, Floating-point os, Functions and
Coprocessor instru Breakpoint instruc Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning Process Architectural Sup	ctions, Coprocessor d ction (BRK - architector Chalk and talk/Powe Ipport for High-Lev ARM floating-point a of memory, Run-time Chalk and talk/Powe	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp er point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interf	ansfers, Coprocessor Pace, Memory faults, A are design, Data typ hal statements ,Loop	register transfers, ARM architecture es, Floating-point os, Functions and licrocontroller Bu
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup	A, The ARM refere	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp pr point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interference peripheral specification, Hard	ansfers, Coprocessor bace, Memory faults, A are design, Data typ hal statements ,Loop face, The Advanced M dware system proto	register transfers, ARM architecture es, Floating-point os, Functions and ficrocontroller Bu
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architecture (AMB ARMulator, The J	Arm floating-point a chalk and talk/Powe apport for High-Leve ARM floating-point a of memory, Run-time Chalk and talk/Powe A), The ARM refere TAG boundary scan	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp er point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interf	ansfers, Coprocessor bace, Memory faults, A are design, Data typ hal statements ,Loop face, The Advanced M dware system proto	register transfers, ARM architecture es, Floating-point os, Functions and licrocontroller Bu
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup Architectural Sup processing suppor	Ark floating-point and talk/Powe apport for High-Leve ARM floating-point a of memory, Run-time Chalk and talk/Powe Chalk and talk/Powe A), The ARM refere TAG boundary scan a t	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interference peripheral specification, Hard test architecture, The ARM debug	ansfers, Coprocessor bace, Memory faults, A are design, Data typ hal statements ,Loop face, The Advanced M dware system proto	register transfers, ARM architecture es, Floating-point os, Functions and licrocontroller Bu
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Sudata types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup Architectural Sup Drocess	Ark floating-point and talk/Powe apport for High-Leve ARM floating-point a of memory, Run-time Chalk and talk/Powe Chalk and talk/Powe A), The ARM refere TAG boundary scan a t	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp pr point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interference peripheral specification, Hard	ansfers, Coprocessor bace, Memory faults, A are design, Data typ hal statements ,Loop face, The Advanced M dware system proto	register transfers, ARM architecture es, Floating-point os, Functions and licrocontroller Bu
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Sud data types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup processing suppor Teaching- Learning Learning Learning	Ark floating-point and talk/Powe apport for High-Leve ARM floating-point a of memory, Run-time Chalk and talk/Powe Chalk and talk/Powe A), The ARM refere TAG boundary scan a t	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interference peripheral specification, Hard test architecture, The ARM debug	ansfers, Coprocessor bace, Memory faults, A are design, Data typ hal statements ,Loop face, The Advanced M dware system proto	register transfers, ARM architecture es, Floating-point os, Functions and ficrocontroller Bu
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Sudata types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup Drocess	Ark floating-point and talk/Powe apport for High-Leve ARM floating-point a of memory, Run-time Chalk and talk/Powe Chalk and talk/Powe A), The ARM refere TAG boundary scan a t	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interference peripheral specification, Hard test architecture, The ARM debug er point presentation	ansfers, Coprocessor bace, Memory faults, A are design, Data typ hal statements ,Loop face, The Advanced M dware system proto	register transfers, ARM architecture es, Floating-point os, Functions and ficrocontroller Bu
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Suddata types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup Architectural Sup processing suppor Teaching- Learning Process	Arm floating-point a of memory, Run-time Chalk and talk/Powe ARM floating-point a of memory, Run-time Chalk and talk/Powe A), The ARM refere TAG boundary scan t t Chalk and talk/Powe	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp er point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interf ence peripheral specification, Hard test architecture, The ARM debug er point presentation Module-5	ansfers, Coprocessor bace, Memory faults, A are design, Data typ hal statements ,Loop face, The Advanced M lware system proto architecture, Embed	register transfers, ARM architecture es, Floating-point os, Functions and ficrocontroller Bu otyping tools, Th Ided Trace, Signa
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Sud data types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup Architectural Sup processing suppor Teaching- Learning Process ARM Processor C	ores: ARM7TDMI, AR	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interf ence peripheral specification, Hard test architecture, The ARM debug er point presentation Module-5 2008, ARM9TDMI, ARM10TDMI, Disco	ansfers, Coprocessor pace, Memory faults, A are design, Data typ nal statements ,Loop face, The Advanced M lware system proto architecture, Embed	register transfers, ARM architecture es, Floating-point os, Functions and ficrocontroller Bu otyping tools, Th Ided Trace, Signa exercises.
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Sud data types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup Architectural Sup processing suppor Teaching- Learning Process ARM Processor Contemportal Memory Hierarch	ARM floating-point a of memory, Run-time Chalk and talk/Powe ARM floating-point a of memory, Run-time Chalk and talk/Powe A), The ARM refere TAG boundary scan t Chalk and talk/Powe ores: ARM7TDMI, AR hy: Memory size and	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp er point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interf ence peripheral specification, Hard test architecture, The ARM debug er point presentation Module-5	ansfers, Coprocessor pace, Memory faults, A are design, Data typ nal statements ,Loop face, The Advanced M lware system proto architecture, Embed	register transfers, ARM architecture es, Floating-point os, Functions and ficrocontroller Bu otyping tools, Th Ided Trace, Signa exercises.
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup Architectural Sup Processing suppor Teaching- Learning Process ARM Processor Co Memory Hierarco management, Exar	ARM floating-point a chalk and talk/Powe apport for High-Leve ARM floating-point a of memory, Run-time Chalk and talk/Powe Chalk and talk/Powe A), The ARM refere TAG boundary scan to t Chalk and talk/Powe ores: ARM7TDMI, AR hy: Memory size and nples and exercises.	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interf ence peripheral specification, Hard test architecture, The ARM debug er point presentation Module-5 EM8, ARM9TDMI, ARM10TDMI, Discu d speed, On-chip memory, Caches, F	ansfers, Coprocessor pace, Memory faults, A are design, Data typ nal statements ,Loop face, The Advanced M lware system proto architecture, Embed	register transfers, ARM architecture es, Floating-point os, Functions and flicrocontroller Bu otyping tools, Th Ided Trace, Signa exercises.
Coprocessor instru Breakpoint instruct Teaching- Learning Process Architectural Su data types, The procedures, Use of Teaching- Learning Process Architectural Sup Architectural Sup Architectural Sup Architectural Sup Processing suppor Teaching- Learning Process ARM Processor Co Memory Hierarco management, Exar	ARM floating-point a of memory, Run-time Chalk and talk/Powe ARM floating-point a of memory, Run-time Chalk and talk/Powe A), The ARM refere TAG boundary scan t Chalk and talk/Powe ores: ARM7TDMI, AR hy: Memory size and	lata operations, Coprocessor data tra ure v5T only), Unused instruction sp r point presentation Module-3 el Languages: Abstraction in softw architecture, Expressions, Condition environment. er point presentation Module-4 velopment: The ARM memory interf ence peripheral specification, Hard test architecture, The ARM debug er point presentation Module-5 EM8, ARM9TDMI, ARM10TDMI, Discu d speed, On-chip memory, Caches, F	ansfers, Coprocessor pace, Memory faults, A are design, Data typ nal statements ,Loop face, The Advanced M lware system proto architecture, Embed	register transfers, ARM architecture es, Floating-point os, Functions and flicrocontroller Bu otyping tools, Th Ided Trace, Signa exercises.

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- **2.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.**

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- Steve Furber "ARM System-On-Chip Architecture" Addison Wesley, 2ndedition
- Joseph Yiu "The Definitive Guide to the ARM Cortex-M3", Newnes, (Elsevier), 2nd edition, 2010.
- Sudeep Pasricha and Nikil Dutt," On-Chip Communication Architectures: System on Chip Interconnect", Morgan Kaufmann Publishers, 2008.
- Michael Keating, Pierre Bricaud "Reuse Methodology Manual for System on Chip designs", Kluwer Academic Publishers, 2ndedition, 2008.

Web links and Video Lectures (e-Resources):

 https://www.ele.uva.es/~jesman/BigSeti/ftp/Microcontroladores/ARM/Arm%20System-On-Chip%20Architecture.pdf.

Skill Development Activities Suggested :

- 1. Interact with industry (small, medium, and large).
 - 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
 - 3. Involve in case studies and field visits/ fieldwork.
 - 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
 - 5. Handle advanced instruments to enhance technical talent.
 - 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
 - 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

SI. No.	Description	Blooms Level
C01	Apply the 3- and 5-stage pipeline ARM processor cores and analyse the implementation iss	ues
CO2	Use the concepts and methodologies employed in designing a System- on-chip (SoC) based around a microprocessor core and in designing the microprocessor core itself.	L3
CO3	Understand how SoCs and microprocessors are designed and used, and why a modern processor is designed the way that it is.	L2
C04	Use integrated ARM CPU cores (including Strong ARM) that incorporate full support for memory management.	L3
C05	Analyze the requirements of a modern operating system and use the ARM architecture to address the same	L4

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE) SEMESTER -II

		SEMESTER - II	
		SystemVerilog	
Course Code	_	22LVS243 CIE Marks	50
Teaching Hours/We (L:P:SDA)		2:0:2 SEE Marks	50
Total Hours of Peda	gogy	25 Hours Theory + 10-12 sessions of SkillTotalDevelopment Activities.Marks	100
Credits		03 Exam Hours	03
Course Learning o	bjectives:		
 To underst 	and the con	cepts of Verification process.	
 To know th 	e concepts o	of System Verilog.	
• To gain the	essential kr	nowledge to write the Verification Code.	
• To learn Ra	indomizatio	n of system Verilog.	
To examine	efunctional	coverage depending upon data sample.	
		of the second seco	
		Module-1	
		verification process, basic test bench functionality, directed testing, meth	
basics, constrained	random sti	mulus, randomization, functional coverage, test bench components, layer	ed
testbench.			
Teaching-	Chalk and	talk/Power point presentation	
Learning Process			
		Module-2	
Data Types: Built is	n Data types	s, fixed and dynamic arrays, Queues, associative arrays, linked lists, array r	nethods,
choosing a storage	type, creat	ting new types with typedef, creating user defined structures, typecon	version,
Enumerated types,	constants ai	nd strings, Expression width.	
Teaching-	Chalk and	talk/Power point presentation	
Learning Process			
		Module-3	
Connecting the tes	st bench an	d design: Separating the test bench and design, The interface construct, S	Stimulus
timing, Interface dr	iving and sa	mpling, System Verilog assertions.	
Teaching-	Chalk and	talk/Power point presentation	
Learning Process		······································	
8		Module-4	
Pandomization: Ir	troduction	Randomization in System Verilog, Constraint details, Solution probabilit	ios Valid
		Random number functions, Common randomization problems.	les, vallu
Teaching-	Chalk and	talk/Power point presentation	
Learning Process		Module-5	
	0		1
		e types, Coverage strategies, Simple coverage example, Anatomy of Cover g	
	•	sampling, Cross coverage, Generic Cover groups, Coverage options, Analyz	zing
-	_	rage statistics during simulation.	
Teaching-	Chalk and	talk/Power point presentation	
Learning Process Assessment Detail	c (both CIE	and SEE)	
	-	Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is	500% Tho
		CIE is 50% of the maximum marks. Minimum passing marks in SEE is 4	
		dent shall be deemed to have satisfied the academic requirements and e	
		/ course if the student secures not less than 50% (50 marks out of 100) in	n me sum
		ernal Evaluation) and SEE (Semester End Examination) taken together.	
Continuous Intern			
1) Three Unit Tes			
		20 Marks or one Skill Development Activity of 40 marks	
to attain the C	Us and POs		

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.**

Semester End Examination:

- 1) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2) The question paper will have ten full questions carrying equal marks.
- 3) Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4) Each full question will have a sub-question covering all the topics under a module.
- 5) The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1) Chris Spear, "System Verilog for Verification A guide to learning the Test bench language features", Springer Publications Second Edition, 2010.
- 2) Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog for Design- A guide to using system Verilog for Hardware design and modelling", Springer Publications Second Edition, 2006.

Web links and Video Lectures (e-Resources):

- 1. <u>https://www.udemy.com/course/soc-verification-systemverilog/</u>
- 2. <u>https://www.udemy.com/course/learn-system-verilog-assertions-and-coverage/</u>

Skill Development Activities Suggested:

- 1) Interact with industry (small, medium, and large).
- 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3) Involve in case studies and field visits/ fieldwork.
- 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5) Handle advanced instruments to enhance technical talent.
- 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities,

Course Outcomes (Course Skill Set)

Sl. No.	Description	Blooms Level
CO1	Apply the SystemVerilog concepts to verify the design.	L3
CO2	Apply constrained random tests benches using SystemVerilog.	L3
CO3	Appreciate Functional Coverage.	L3, L4

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE)

SEMESTER -II				
HIGH FREQUENCY GaN ELECTRONIC DEVICES				
Course Code	22LVS 244	CIE Marks	50	
Teaching Hours/Week (L:P:SDA)	2:0:2	SEE Marks	50	
Total Hours of Pedagogy	25 Hours Theory + 10 -12 slots for Skill Development Activities	Total Marks	100	
Credits	03	Exam Hours		

Course Learning objectives:

- To understand an integrated treatment of the state of the art in both conventional (i.e., HEMT) scaling as well as unconventional device architectures suitable for amplification and signal generation
- To understand the both conventional scaled HEMTs (into the deep mm-wave) as well as unconventional approaches to address the mm-wave and THz regimes;
- To know related physics, as well as numerical simulations and experimental realizations..

Introduction and Overview:

High Power High Frequency Transistors: A Material's Perspective: Introduction, Johnson's Figure of Merit, Output Power Figure of Merit 2, Achieving Mobile Carriers for Wide Band Gap Semiconductors, Low Field Mobility Considerations, Channel Temperature Considerations, Heterojunction Advantages

Module-1

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

Module-2

Isotope Engineering of GaN for Boosting Transistor Speeds: Introduction, Current Saturation, The Effect of Non-equilibrium LO Phonons is Twofold, Derivation of the Electron-LO Phonon Interaction Hamiltonian, Evaluating the Probability of Scattering into the LO Phonon Mode q, Evaluation of the Phonon Population in Each Mode, Calculating Velocity vs. Field Dependence, Analysis, "Creative Disorder", Summary of the Theoretical Analysis, Experimental Feasibility of Introducing Isotopic Disorder in GaN HEMTs.

Linearity Aspects of High Power Amplification in GaN Transistors: "Creative Disorder", Summary of the Theoretical Analysis, Experimental Feasibility of Introducing Isotopic Disorder in GaN HEMTs, Overview of Nonlinearity and Its Impacts, Trade-Offs Against Other Metrics, Origins of Non-linearity in GaN HEMTs, Transconductance, Capacitance, Self-heating, Trapping, Large-Signal Modelling, Special Concerns for GaN, Available Models, Physically Derived Models, Circuit Models, Device-Level Design for Linearity, Linearizing the Transconductance Profile, BRIDGE FET Technology.

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

Module-3

III-Nitride Tunneling Hot Electron Transfer Amplifier (THETA):

Overview of the Chapter Analysis of Hot Electron Transport and Monte Carlo Simulation, Electron Transport Scattering Mechanisms, Monte Carlo Simulation Small Signal Models for High-Frequency Performance ,Effectof Base Thickness and Doping on β , gm, Delay Component, ft, and fmax, Effect of Emitter-Base Current Density on Delay Component, ft, and fmax , Unipolar Transport in III-Nitride Alloys, Polarization-Engineered Vertical Barriers, Leakage in Vertical AlGaN/GaN Heterojunctions, Polarization-Engineered Base-Collector Barriers, Design, Growth, Fabrication, and Characterization of THETA ,Generation I: Common-Emitter Current Gain , Ga Polar THETA with Current Gain >1, N Polar THETA Hot Electron Transport in Vertical AlGaN/GaN Heterostructures, Negative Differential Resistance in III-Nitride THETA, Generation II: Current Gain > 10 in III-Nitride HETs

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	
	Module-4

Plasma-Wave Propagation in GaN and Its Applications:

Electron PlasmaWaves: Physical Origin, Drude Conductivity and Distributed Models for HEMTs, Hydrodynamic Transport Equations and Non-linear Effects, Electron PlasmaWaves in GaN Experimental Demonstration, Direct Electrical Probing, Quasi-Optical Excitation, Prospective Applications, RTD-Gated HEMT.

Numerical Simulation of Distributed Electromagnetic and Plasma Wave Effect Devices: Hydrodynamic Modeling of the 2DEG Channel ,Electrodynamic Equations (or Maxwell's Equation), Finite Difference TimeDomain (FDTD) Solution, Time-Space Discretization of HD Equations, Time-Space Discretization of Maxwell'sEquation 4 Verification Using Analytical Models and Experimental Data , Model Validation Via Analytical Method , Model Validation Via Prior Measurements 5 HEMT-Based Terahertz Emitters Using PlasmaWaveInstability , Modeling of HEMT-Based Terahertz Emitters, Full-Wave Hydrodynamic Modeling of Terahertz Emissions from an Short Channel HEMT [24], Dyakonov-Shur Instability, Instability Mechanism , Instability inUngated InGaAs HEMT,

Teaching-	Chalk and talk/Power point presentation
Learning	
Process	

Module-5

Resonant Tunneling Transport in Polar III-Nitride:

Introduction, Background on Resonant Tunneling Devices, III-Nitride-Based Resonant Tunneling Devices, Polar Double-Barrier Heterostructures, Molecular Beam Epitaxy of III-Nitride RTDs, GaN/AlN Resonant Tunneling Diodes, Polar RTD Model, New Tunneling Features in Polar RTDs, Polar RTD at Resonance, Polarization - Induced Threshold Voltage,

Teaching-
LearningChalk and talk/Power point presentationProcess

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of 20 Marks
- **2.** Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks

CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

1. Patrick Fay, Debdeep Jena, Paul Maki, "High-Frequency GaN Electronic Device", Springer International Publishing, 2020

Web links and Video Lectures (e-Resources):

- 1. <u>https://www.youtube.com/watch?v=BboadvgRTYI</u>
- 2. <u>https://www.youtube.com/watch?v=o3369LXjt3o</u>

Skill Development Activities Suggested

- 1) Interact with industry (small, medium, and large).
- 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3) Involve in case studies and field visits/ fieldwork.
- 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5) Handle advanced instruments to enhance technical talent.
- 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
CO1	Describe the role and impact of nitrogen isotopic selection in material growth and its	L2
	impact on carrier transport for increasing device speed and power.	
CO2	Analyse two distinct perspectives on novel approaches for improving the linearity of GaN-based devices (a key metric for emerging high-speed communications applications) in terms of unconventional device concepts in the III-N material system.	L4
CO3	Analyse hot-carrier injection-based devices, plasma-wave-based devices, and resonant tunneling diodes.	L4
CO4	Understand the emergence of high-speed devices demands new techniques for characterization of devices and also new approaches to numerical simulation of devices.	L2
C05	Describe emerging noncontact fabrication and characterization techniques for ultrahigh-speed devices	L5

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE) SEMESTER -II

		SEMESTER -II		
II Semester		Machine Learning and Deep Learning		
Course Code		22LVS245	CIE Marks	50
Teaching Hours/Week (L:P:SDA)	<u>c</u>	2:0:2	SEE Marks	50
Total Hours of Pedage	ogy	25 Hours Theory + 10-12 sessions of Skill Development Activities.	Total Marks	100
Credits		03	Exam Hours	03
Course Learning obj	ectives:			
To understar	ıd various	key paradigms for machine learning approaches		
To familiariz	e with the	mathematical and statistical techniques used in machi	ne learning	
 To understar 	d and diff	erentiate among various machine learning techniques		
 To know tech 	nical deta	ils about various recent algorithms related to Machine	Learning with speci	fic focus
on Deep Lear	ning			
		Module-1		
Supervised Learning	- Introduc	tion: Motivation, Different types of learning, Linear re	gression, Logistic reg	gression
Support Vector Mach	ines: Hard	SVM, Soft SVM, Optimality conditions, Duality, Kernel t	rick, Implementing S	oft SVM
with Kernels				
Teaching-Learning	Chalk an	d talk/Power point presentation		
Process				
		Module-2		
Decision Trees: Deci	sion Tree a	lgorithms, Random forests		
Neural Networks: Fe	edforward	neural networks, Expressive power of neural network	s, SGD and Backprop	agation
Model selection and	validation:	Validation for model selection, k-fold cross-validation	, Training Validation-	Testing
split, Regularized los				
Teaching-Learning	Chalk an	d talk/Power point presentation		
Process		Module-3		
=	-	nerative Models - Nearest Neighbour: k-nearest neighb		-
		ustering algorithms, k-means algorithm, Spectral at Analysis, Random projections, Compressed sensing	-	sionality
Teaching-Learning	Chalk an	d talk , Power point presentation ,NPTEL ,VTU E-learn	ing resources . Expe	rimental
Process		Problem based learning		
	8	Module-4		
Foundations of Deep	Learning:	DNN, CNN, Autoencoders		
Teaching-Learning	Chalk an	d talk/Power point presentation		
Process		Module-5		
Introduction to Doo	n Loorning	- Model Search: Optimization, Regularization, AutoMI		
Applications: Neura			<u>_</u>	
Teaching-Learning Process	Chalk an	d talk/Power point presentation		
Assessment Details	(both CIE	and SEE)		
	-	nternal Evaluation (CIE) is 50% and for Semester	End Exam (SEE) is !	50%. The
		CIE is 50% of the maximum marks. Minimum passin		
maximum marks of S	SEE. A stud	lent shall be deemed to have satisfied the academic	requirements and ea	arned the
		course if the student secures not less than 50% (50	-	
		ernal Evaluation) and SEE (Semester End Examination	-	
Continuous Internal				
1) Three Unit Tests e	each of 20	Marks		
2) Two assignments	each of 20	Marks or one Skill Development Activity of 40 ma	rks	

to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks** CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2) The question paper will have ten full questions carrying equal marks.
- 3) Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4) Each full question will have a sub-question covering all the topics under a module.
- 5) The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1) Shalev-Shwartz,S., Ben-David,S., (2014), Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press
- 2) R. O. Duda, P. E. Hart, D. G. Stork (2000), Pattern Classification, Wiley-Blackwell, 2nd Edition
- 3) Goodfellow, I., Bengio., Y., and Courville, A., (2016), Deep Learning, The MIT Press
- 4) Mitchell Tom (1997). Machine Learning, Tata McGraw-Hill
- 5) C. M. BISHOP (2006), Pattern Recognition and Machine Learning, Springer-Verlag New York, 1st Edition.
- 6) Charniak, E. (2019), Introduction to deep learning, The MIT Press.

Web links and Video Lectures (e-Resources):

- 3. Department of Computer Science, Stanford University, <u>https://see.stanford.edu/Course/CS229</u>
- 4. <u>https://www.deeplearningbook.org/</u>

Skill Development Activities Suggested:

- 1) Interact with industry (small, medium, and large).
- 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3) Involve in case studies and field visits/ fieldwork.
- 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5) Handle advanced instruments to enhance technical talent.
- 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Formulate a machine learning problem	L1, L2
CO2	Select an appropriate pattern analysis tool for analyzing data in a given feature space	L4
CO3	Apply pattern recognition and machine learning techniques such as classification to practical applications and detect patterns in the data	L3
CO4	Design efficient algorithms related to recent machine learning techniques, train models, and develop real-world ML-based applications	L3

Choice Based C Ed	DESIGN & EMBEDDED SYSTE redit System (CBCS) and Out ucation(OBE)SEMESTER -III		
MI	NI PROJECT WITH SEMINAR		
Course Code	22LVS25	CIE Marks	100
Teaching Hours/Week (L:P:SDA)	0:4:2	SEE Marks	-
Total Hours of Pedagogy	-	Total Marks	100
Credits	03	Exam Hours	-

Course objectives:

- To support independent learning and innovative attitude.
- To guide to select and utilize adequate information from varied resources upholding ethics.
- To guide to organize the work in the appropriate manner and present information (acknowledging thesources) clearly.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independence and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instill responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face the audience confidently, enhance communication skills, involve in group discussion to present and exchange ideas.

Mini-Project with seminar : Each student shall involve in carrying out the project work jointly in constant consultation with Internal guide, co-guide, and external guide and prepare the project report as per the norms avoiding plagiarism.

Course outcomes:

At the end of the course the student will be able to:

- Present the mini-project and be able to defend it.
- Make links across different areas of knowledge and generate, develop and evaluate ideas and information so as to apply these skills to the project task.
- Habituated to critical thinking and use problem-solving skills.
- Communicate effectively and to present ideas clearly and coherently in both written and oral forms.
- Work in a team to achieve a common goal.
- Learn on their own, reflect on their learning and take appropriate actions to improve it.

CIE procedure for Mini - Project:

The CIE marks awarded for Mini - Project, shall be based on the evaluation of Mini - Project Report, Project Presentation skill and Question and Answer session in the ratio 50:25:25.The marks awarded for Mini - Project report shall be the same for all the batch mates.

		CH VLSI DESIGN & EMBED			
	Choice	Based Credit System (CBC Education(OBE)SEM	IESTER -II	Based	
		VLSI & ES Lal	b-2		
	se Code	22LVSL26		CIE Marks	40
	ningHours/Week (L:T:P)	0:0:4		SEE Marks	60
Credi	its	02		Exam Hours	03
SI.		Experim	ents		
NO	PART A: VLSI Design.				
		nducted using suitable CA	AD tool		
1	i) DC Ana ii) Transi b. Draw the Layou c. Check for XX d. Extract RC and	natic and verify the following	ng d verify the Design	1	w:
2	i) DC Ana ii) AC Ana iii) Trans b. Draw the Layou c. Check for XX d. Extract RC and i) Single S ii) Comm iii) Desig Com	natic and verify the followin lysis	ng LVS d verify the Design ecification* using o prary**	n differential amplifi	
3	Design an Integrator using	g OPAMP (First Order)			
4	Design a Differentiator usi	ng OPAMP (First Order)			
5	Design and characterize a	basic Sigma delta ADC fror	n the available des	igns.	
*App ** Ap	other experiments may be a ropriate specification shoul plicable Library should be a n appropriate constraint sh PART B: RTOS program	d be given. dded & information should	d be given to the D	esigner.	
1	Develop programs to (a) c (b) E	reate child process and dis xecute child process function		ructure	
2	Develop and test program f buffer forthe conversion o				a
3		for a multithreaded applic oversion of lowercase text			ıgh
4	Develop program for inter queue.Data is to be input f	r-thread communication us rom the keyboard for the c			

5	Create 'n' number of child threads. Each thread prints the message "I'm in thread number" and sleepsfor 50 ms and then quits. The main thread waits for complete execution of all the child threads and then quits. Compile and execute in Linux.
6	Implement the usage of anonymous pipe with 512 bytes for data sharing between parent and child processes using handle inheritance mechanism.

Course outcomes:

At the end of the course the student will be able to:

- 1. Design, implement and analyse analog, digital and mixed mode circuits
- 2. Learn the various issues in Mixed signal designs basically data converters.
- 3. Acquire hands-on skills of using CAD tools in VLSI design and Appreciate the design process in VLSIthrough a mini-project on the design of a CMOS sub-system.
- 4. Implement different techniques of message passing and Inter task communication.
- 5. Implement different data structures such as pipes, queues and buffers in multithreaded programming and alsoselect a suitable task switching technique in a multithreaded application.

Conduct of Practical Examination:

All laboratory experiments are to be included for practical

examination.For examination, two questions using different tool to be set.

Students are allowed to pick one experiment from the lot.

Strictly follow the instructions as printed on the cover page of answer script for breakup of marks. Change of experiment is allowed only once and Marks allotted to the procedure part to

be made zero.

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE) SEMESTER -III

		SEMESTER -III	, c	,
		CAD of DIGITAL SYSTEMS		
Course Code		22LVS31	CIE Marks	50
	rs/Week (L:P:SDA)	3:0:2	SEE Marks	50
Total Hours o	f Pedagogy	40Hours Theory + 10 -12 slots for Skill Development Activities	Total Marks	100
Credits		04	Exam Hours	3
 To lea To ur To lea To lea To lea Introductio DesignMethod VLSI Design levelDesign, Algorithmic Representati Tractable a 	evel synthesis, and several n to Design Methodolog ods and Technologies. n Automation tools: Algo Layout Design, Verificatio c graph theory and comp ion ofGraphs, Computation	n methods . of the design . problems and algorithms to solve the aspects of layout design, the wide ran <u>Module-1</u> ies: The VLSI Design Problem, The De prithmic and System Design, Structur	ge of VLSI design a sign Domains, Des al and Logic Desi Data Structures for orithms.	ign Actions, gn, Transistor-
hardness,	-		-	
Feaching- Learning	Chalk and talk/Power p	oint presentation		
Process				
		Module-2		
Compaction, Feaching- Learning	Other Issues. Chalk and talk/Powe	ymbolic Layout, Problem Formulatio		
Process		Madula 2		
Diagonation	and monthly and a Cinemit	Module-3		
	lgorithm, Partitioning: Circuit	Representation, Wire-length Estimat	ion, Types of Place	ement Problem,
	5	ots, Shape Functions and Floorplan Sizi	inσ	
Feaching-	Chalk and talk/Power p			
0	Chaik and taik/rower p	onit presentation		
Learning Process				
10652		N - J1 - 4		
D!		Module-4		
0,	vpes of Local Routing Pro For Global Routing.	blems, Area Routing, Channel Routing,	introduction to G	iobal Kouting,
0	8	Simulation, Gate-level Modeling and S	Simulation Switch	level Modeling
andSimulatio		Simulation, date-level Modeling and S		level Modeling
Teaching-	Chalk and talk/Power p	oint presentation		
Learning				
Process				
		Module-5		
Logic Synth	esis and Verification: Ir	ntroduction to Combinational Logic S	ynthesis, Binary-d	ecision Diagrams
High level	Allocation, Assignment a	dels for High Level Synthesis, Interr nd Scheduling, Some Sc heduling Al		
Teaching-	Chalk and talk/Power po	int presentation		
Learning		F. 00011001011		
Process		40.00.0000		

Process

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of **20 Marks**
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books.

- S H Gerez Algorithms for VLSI Design Automation , Wiley, India 2nd Edition
- N.A. Sherwani Algorithms for VLSI Physical Design Automation Springer International edition 3rd Edition

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/watch?v=FVmsr-c6g3k</u>
- <u>https://www.youtube.com/watch?v=gRC7C_PtfYw</u>

Skill Development Activities Suggested

- 1) Interact with industry (small, medium, and large).
- 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3) Involve in case studies and field visits/ fieldwork.
- 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5) Handle advanced instruments to enhance technical talent.
- 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Course outcome (Course Skill Set)

At the end	l of the course the student will be able to :	
Sl. No.	Description	Blooms Level
C01	Understand the various design methodologies.	L2
CO2	Solve graph theoretic problems.	L3 ,L5
CO3	Evaluate the computational complexity of an algorithm.	L5
CO4	Write algorithms for VLSI Automation.	L1
C05	Simulate and synthesize digital circuits using VLSI automation tools.	L4

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -III

		SEMESTER –III		
	Fi	nFETs and Other Multi-Gate Tran	sistors	
Course Code		22LVS321	CIE Marks	50
Teaching Hours/\	Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of Pedagogy		40	Total Marks	100
Credits		03	Exam Hours	3
Course Learning	Objectives: evolution of SOI M()S transistor		
		formation techniques and advanced	d gate stack deposition	
	-	_	a gate stack deposition.	
	-	e physics behind BSIM-CMG.		
		he multi-gate MOS system.		
To realise the	e interrelationship	between the multi-gate FET device	properties and digital and analog	g circuits.
		Module-1		
he SOI MOSFET: From	Single Gate to Mu	ltiGate:		
brief history of Multipl	le - Gate MOSFETs,	MultiGate MOSFET physics.		
Teaching- Learning Process	Chalk and tal	k method/Power Point Presentation	1	
		Module-2		
Multigate MOSF	ET Technology :	Introduction, Active Area:Fins, G	ate Stack	
Teaching-	Chalk and tal	k method/Power Point Presentation	1	
Learning Process				
-		Module-3		
	MILC MIC			1.1.
MultiGate Models, BS		ate Transistors : Introduction, Fr -IMG, BSIM-CMG.	amework for Multigate FET MC	odenng,
Teaching- Learning Process	Chalk and tal	k method/Power Point Presentation	1	
		Module-4		
Physics of the M confinement.	MultiGate MOS sy	stem : Device electrostatics, Dou	ble gate MOS system, Two-dim	iensional
Teaching-	Chalk and tal	k method/Power Point Presentation	1	
Learning Process				
		Module-5		
		esign : Introduction, Digital Circuit I		
Teaching- Learning Process	Chalk and tal	k method/Power Point Presentation	n, Demonstration of circuits.	
	ails (both CIE and	-		
The weightage of	Continuous Intern	al Evaluation (CIE) is 50% and for	r Semester End Exam (SEE) is 5	0%. The
minimum passing ma	irk for the CIE is 5	0% of the maximum marks. Minim	num passing marks in SEE is 40 ⁴	% of the
maximum marks of S	EE. A student sha	Ill be deemed to have satisfied the	academic requirements and ea	rned the
		if the student secures not less than	_	
		luation) and SEE (Semester End Exa		
Continuous Inter				
	each of 20 Marks			
-		s or one Skill Development Activi t	ty of 40 marks	
to attain the COs and		69	-, 	
		ents/skill Development Activities, w	ill be scaled down to 50 marks	
		lesigned to attain the different l		
outcome defined for		tesigned to attain the unrefellt l	evens of bloom's taxonomy as	per uie
outcome defined for	the course	10.08.2023		

Semester End Examination:

- 1) The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2) The question paper will have ten full questions carrying equal marks.
- 3) Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4) Each full question will have a sub-question covering all the topics under a module.
- 5) The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1) J.P.Colinge,: FinFETs and other Multi-Gate Transistors, springer, Series on Integrated Circuits and Systems.
- 2) Samar Saha, : Fin FET Devices for VLSI Circuits and Systems, CRC Press, First Edition, 2020
- 3) Weihua Han,Zhiming M. Wang, : Toward Quantum FinFET, Springer Cham, First Edition 2021.
- 4) Yogesh singh Chauhan, Darsen D, et.al , FinFET Modeling for IC Simulation and Design: using the BSIM-CMG standard, Academic Press, 2015.

Web links and Video Lectures (e-Resources) :

- 1. <u>http://www.ee.iitb.ac.in</u>
- 2. http://online courses.nptel.ac.in
- 3. http;//icmaskdesign.com
- 4. http;//link.springer.com

Skill Development Activities Suggested

- Assignments
- Seminar
- Literature survey

Skill Development Activities Suggested:

- 1) Interact with industry (small, medium, and large).
- 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3) Involve in case studies and field visits/ fieldwork.
- 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5) Handle advanced instruments to enhance technical talent.
- 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

ľ	SI. No.	Description	Blooms Level
	CO	List out the advantages and challenges of Multi-gate Fin FETs.	L2
1			
	CO	Describe thin film formation technique, gate stack deposition and physics beyond BSIM-	L3
2		CMG.	
	CO	Analyse electrostatics of multi-gate MOS system and corelate multigate FET device	L3
3		properties and elementary digital and analog circuits.	

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE)

		SEMESTER -III Internet of Things		
Course Code		22LVS322	CIE Marks	50
	s/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of		40	Total Marks	100
Credits	reuagogy	03	Exam Hours	3
	ing objectives:	05	Examinitiours	5
		nd its applications in today's scena	rio.	
	dy the IoT network architectu			
	•	ration and transport through ne	etworks use cases of IoT	
	0	1 0		
• To Un	derstand the devices emplo	oyed for IOT data acquisition.		
		Module-1		
What is IoT ?				
Genesis, Digitiz	zation, Impact, Connected F	Roadways, Buildings, Challenges	5	
	Architecture and Design			
Drivers behind	d new network Architectu	res, Comparing IoT Architectu	res, M2M architecture, Io	oT world forum
standard, IoT I	Reference Model, Simplified	l IoT Architecture.		
Teaching-		int presentation ,NPTEL ,VTU E	-learning resources . Expe	erimental
Learning	learning, Problem based	-	5 ·····,·pe	
Process	icarining, i robieni basea i			
		Module-2		
IoT Network	Architecture and Design			
sublayer, Gate	ways and backhaul sublaye cations and Analytics) – Ar c	rs and Actuators), Layer 2(Com er, Network transport sublayer,I ealytics vs Control, Data vs Netw er point presentation ,NPTEL ,V ed learning	oT Network management work Analytics, IoT Data N	Managementand
FIOCESS		Module-3		
	- Sensors, Actuators, MEM	S and smart objects.Sensor net		
Constrained N		Frequency bands, power cons	umption, Topology, Cons	strained Devices,
		nly of IEEE 802.15.4g, 4e, IEEE	E 1901.2a Standard Allian	ces – LTE Cat0.
LTE-M, NB-IoT	-			,
Teaching-		int presentation ,NPTEL ,VTU E	-learning resources Evne	rimental
Learning	learning, Problem based	-	rearning resources, Expe	.Timentai
-	learning, i robieni baseu	learning		
Process		Mad-1- 4		
n • • -		Module-4		
Engineering I				Natara La D
versions, Optir Background or	nizing IP for IoT. Application nly of SCADA,Generic web	Adoption, Optimization, Constra on Protocols for IoT – Transpo based protocols, IoT Applicatio	ort Layer, Application Tra on Layer	ansport layer,
Challenges.	iyucs for for – introducu	on, Structured and Unstructur	eu uata, ioi Data Allaiyt	ics overview and
Teaching- Learning Process	Chalk and talk , Power po learning, Problem based	int presentation ,NPTEL ,VTU E learning	-learning resources , Expe	erimental
		Module-5		
IoT in Industr	y (Three Use cases)	61		
IoT Strategy fo Utilities – Pow grid block and	r Connected manufacturing er utility, IT/OT divide, Gr automation.	g, Architecture for Connected Fa id blocks reference model, Refe	erence Architecture, Prima	-
Smart and Cor	mecteu cities –strategy, Si	nart city network Month 2023 ture	, suleet layer, city layer, L	ata center layer,

services layer	, Smart city security architecture, Smart street lighting.
Teaching- Learning Process	Chalk and talk/Power point presentation
	Details (both CIE and SEE)
The weightag	e of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The
-	sing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the
	rks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the
	d to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum
	E (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.
	nternal Evaluation:
	Unit Tests each of 20 Marks
	ignments each of 20 Marks or one Skill Development Activity of 40 marks the COs and POs
The sum of th	ree tests, two assignments/skill Development Activities, will be scaled down to 50 marks
CIE methods	/question paper is designed to attain the different levels of Bloom's taxonomy as per the
	ined for the course.
	d Examination:
50.	EE question paper will be set for 100 marks and the marks scored will be proportionately reduced to
	stion paper will have ten full questions carrying equal marks. I question is for 20 marks. There will be two full questions (with a maximum of four sub-questions)
from eac	ch module.
	question will have a sub-question covering all the topics under a module.
	lents will have to answer five full questions, selecting one full question from each module
	arning Resources: Hance Congolo Salqueiro, Petrick Crossetato, Pohert Porton, Jaromo Hanry, "Ciaco, JOT Fundamentale
– Netv	Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "Cisco, IOT Fundamentals vorking Technologies, Protocols, Use Cases for IOT", Pearson Education; First edition 2017, ISBN: 978- 173743.
2. Arshd	eep Bahga and Vijay Madisetti, "Internet of Things – A Hands on Approach", Orient Blackswan Private ed - New Delhi; First edition
X47-1-1-1	
	d Video Lectures (e-Resources):
2. <u>https://</u>	archive.nptel.ac.in/courses/106/105/106105166/ www.youtube.com/watch?v=urUBLmXFKl0&list=PLgMDNELGJ1CaBrefq-0eYatfOnoncW0y- www.youtube.com/watch?v=Yci9PfPppiw&list=PLgMDNELGJ1CZoUIF-iKcH9TSVcmG6IBcU
Skill Develop	oment Activities Suggested
1) Interact	with industry (small, medium, and large).
	in research/testing/projects to understand their problems and help creative and innovative methods the problem.
	in case studies and field visits/ fieldwork.
	m to the use of standards/codes etc., to narrow the gap between academia and industry.
-	advanced instruments to enhance technical talent.
-	fidence in modelling of systems and algorithms for transient and steady-state operations, thermal
7) Work of	n different software/s (tools) to simulate, analyze and authenticate the output to interpret and
conclude	
	s should enhance student's abilities to employment and/or self-employment opportunities,
-	nt skills, Statistical analysis, fiscal expertise, etc. d the course instructor (s to involve either individually or in groups to interact together to enhance
	d the course instructor/s to involve either individually or in groups to interact together to enhance g and application skills of the study they have undertaken. The students with the help of the course
	take up relevant technical –activities which will enchance their skill. The prepared report shall be

10.08.2023

evaluated for CIE marks.

Sl. No.	Description	Blooms Leve
CO1	Understand the basic concepts IoT Architecture and devices employed.	L1, L2
202	Analyze the sensor data generated and map it to IoT protocol stack for transport.	L2, L3
03	Apply communications knowledge to facilitate transport of IoT data over various available communications media.	L2, L3
CO4	Design a use case for a typical application in real life ranging from sensing devices to analyzing the data available on a server to perform tasks on the device.	L3, L4
CO5	Apply knowledge of Information technology to design the IoT applications.	L3, L4

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education (OBE) SEMESTER -III

		SEMESTER -III		
		/LSI Design for Signal Process	ing	
Course Code		22LVS323	CIE Marks	50
-	/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of H	Pedagogy	40	Total Marks	100
Credits		03	Exam Hours	03
techniq To under capacita To anal To crea To under Introduction Technologies, Iteration Bou ComputingIter	n the Transformations for ues erstand the Power reduct ance reduction lyse area reduction using te Strategies for arithmet erstand Synchronous, way to DSP Systems: Typical Representations of DSP A unds: Data flow graph ation Bound, Iteration Bo	ic implementation ve, and asynchronous pipelining Module-1 DSP Algorithms, DSP Applicat lgorithms. Representations, loop bound und of multi rate data flow grap	voltage reduction as well a g ion Demands and Scaled C d and Iteration bound.	s for strength or
Teaching- Learning Process	Chalk and talk/Power po	int presentation		
1100035		Module-2		
Retiming: Defi Teaching- Learning Process	nition and Properties, So Chalk and talk/Power	lving Systems of Inequalities, Re	etiming Techniques.	
		Module-3		
Application of Folding: Fold Architectures, Teaching- Learning	Unfolding.			-
Process				
Vector, Matrix containing Del Fast convolution	-Matrix Multiplication a ays.	Module-4 c array design Methodology, F nd 2D systolic Array Design, n, Winograd Algorithm, Iterate	Systolic Design forspace	representation
Learning	Chalk and talk/Power po	int presentation		
Process		Module-5		
digital Filter, I processing for adaptive digital	Higher order IIR digital F IIR Filter, Low power filter.	d Adaptive Filter : Pipeline In Filter, parallel processing for II IIR Filter Design Using Pipelin	R filter, Combined pipelin	ing and parallel
Teaching- (Learning Process	Chalk and talk/Power poin	nt presentation 61		

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of **20 Marks**
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books.

- 1. Keshab K.Parthi , VLSI Digital Signal Processing systems, Design and implementation, Wiley, 1999
- 2. Mohammed Isamail and Terri Fiez , Analog VLSI Signal and Information Processing, Mc Graw-Hill, 1994
- 3. S.Y. Kung, H.J. White House, T. Kailath, VLSI and Modern Signal Processing, Prentice Hall, 1985
- 4. Jose E. France, Yannis Tsividis, Design of Analog Digital VLSI Circuits for Telecommunication and Signal Processing. Prentice Hall, 1994
- 5. Lars Wanhammar, DSP Integrated Circuits, Academic Press Series in Engineering, 1stEdition

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/watch?v=3UZdP-bTJtQ&list=PL3p-ZpXPqK6vvxeTp1k4kDMJj74WIetyC</u>
- <u>https://www.youtube.com/watch?v=BJE0wWb5HL4&list=PL3pZpXPqK6vvxeTp1k4kDMJj74WIetyC&index=2</u>

Skill Development Activities Suggested

- 1) Interact with industry (small, medium, and large).
- 2) Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3) Involve in case studies and field visits/ fieldwork.
- 4) Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5) Handle advanced instruments to enhance technical talent.
- 6) Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7) Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be

Course outcome (Course Skill Set) At the end of the course the student will be able to :

Sl. No.	Description	Blooms Level
C01	Illustrate the use of various DSP algorithms and addresses their representation using block diagrams, signal flow graphs and data-flow graphs	L3 ,L6
CO2	Use pipelining and parallel processing in design of high-speed /low-power applications	L6
CO3	Apply unfolding in the design of parallel architecture.	L3
CO4	Evaluate the use of look-ahead techniques in parallel and pipelined IIR Digital filters.	L5
C05	Develop an algorithm or architecture or circuit design for DSP applications	L6

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE) SEMESTER -III

		ADVANCES IN IMAGE PROCESS	ING	
Course Code		22LVS324	CIE Marks	50
	rs/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of	· · · · · · · · · · · · · · · · · · ·	40	Total Marks	100
Credits	Teuagogy	03	Exam Hours	100
	ing objectives:	03	Examinitiours	
imag • Equi analy • Selec • Repr	e and its properties p with some pre-pro- vsis purpose. at the region of intere esent the image based	wledge in understanding th cessing techniques required st in the image using segme d on its shape and edge info ent in the image based on it	to enhance theimag entationtechniques. rmation.	e for further
		Module-1		
The ima	ge, its represen		es: Imagerepresent	ations a few
concepts, I properties,	mage digitization, Dig Color images.	gital image		
Teaching- Learning Process	Chalk and talk/Power p	oint presentation		
		Module-2		
Image transforma	Pre-processing: tions, local pre-proces	0	sformations,	geometric
Teaching- Learning Process	Chalk and talk/Powe	er point presentation		
		Module-3		
relaxation, Region spl	Border tracing, Houg litting, Splitting and	Edge-based segmentation h transforms; Region – base merging, Watershed seg	ed segmentation – Re	gion merging,
processing				
Teaching-	Chalk and talk/Power p	ome presentation		
Learning				
Process				
	presentation and		ntification; Contour-	
Fourier tra	ansforms of boundari	 Chain codes, Simple Boundary description nape representation and d 	using segment seque	nces, B-spline
-	, Moments, Convex hi		comption - omple	scalal legioli
Teaching-	Chalk and talk/Power p			
Learning		one presentation		
Process				
		Module-5		
		c morphological concepts, F d object marking, Morpholo		
Teaching- Learning Process	Chalk and talk/Power po	vint presentation		

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of **20 Marks**
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision", Cengage Learning, 2013, ISBN: 978-81-315-1883-0
- Geoff Doughertry, Digital Image Processing for Medical Applications, Cambridge university Press, 2010
- S.Jayaraman, S Esakkirajan, T.Veerakumar, Digital Image Processing, Tata McGraw Hill, 2011

Web links and Video Lectures (e-Resources):

https://www.youtube.com/watch?v=EcSvZIFIz6c https://www.youtube.com/watch?v=RXLPYdBQRtU

Skill Development Activities Suggested

- 1. Interact with industry (small, medium, and large).
 - 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
 - 3. Involve in case studies and field visits/ fieldwork.
 - 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
 - 5. Handle advanced instruments to enhance technical talent.
 - 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
 - 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc. Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help of the course teacher can take up relevant technical –activities which will enhance their skill. The prepared report shall be evaluated for CIE marks.

Sl. No.	Description	Blooms Level
CO1	Understand the representation of the digital image and its properties	L1
CO2	Apply pre-processing techniques required to enhance the image for its further analysis.	L1,L2
CO3	Use segmentation techniques to select the region of interest in the imagefor analysis	L1,L2,L3
CO4	Represent the image based on its shape and edge information.	L1,L2,L3
C05	Describe the objects present in the image based on its properties andstructure.	L1,L2,L3

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (LVS) Choice Based Credit System (CBCS) and Outcome Based Education(OBE) SEMESTER -III

		SEMESTER -III		
		Advanced Computer Architec		
Course Code		22LVS325	CIE Marks	50
	rs/Week (L:P:SDA)	3:0:0	SEE Marks	50
Total Hours of	f Pedagogy	40	Total Marks	100
Credits		03	Exam Hours	03
To unTo lea	arn different Pipelining a	design principles of modern proce & Superscalar Technologies for pr s of Parallel Programming Model	ocessors.	
Davallal Cox	mutor Modele, The C	Module-1 tate of Computing, Multiprocesso	we and multicomputered	Multivector and
SIMD compu	-	tate of computing, Multiplotesso	ors and multicomputers,	Multivector and
Program an Flow Mechan	-	: Conditions of parallelism, Prog	gram Partitioning & Sche	duling, Program
Teaching- Learning Process	Chalk and talk/Power	point presentation		
		Module-2		
Memory Hier Teaching- Learning Process	archy Technology, Virtu	ver point presentation		
		Module-3		
		us Systems, Cache Memory Organ	izations, Shared Memory	Organizations,
	Weak Consistency Mod	el. 10logies : Linear Pipeline Proc	accore Nonlineer Dinel	ing Dragoggara
	-	ic Pipeline Design, Superscalar Pip	-	life Flocessols,
			Jenne Design.	
Teaching-	Chalk and talk/Power	point presentation		
Learning				
Process		Madala A		
	0 011/D 0 .	Module-4		<u> </u>
	& SIMD Computers: essing, SIMD Computer C	Vector Processing principles, Mu	itivector Multiprocessors,	Compound
	<u> </u>	Flow Computers: Latency Hidin	o Techniques Principles (of Multithreading
		and Multithreaded Architectures,		-
	Chalk and talk/Power		Data Flow and Hybrid Arci	intectules.
Teaching- Learning		point presentation		
Process				
		Module-5		
Dependence Parallel Pro	Analysis and Data Array	ompilers: Parallel Programming rs, Code Optimization and Schedul d Environments: Parallel Progra	ing, Loop Parallelization a	nd Pipelining.
Teaching-	Chalk and talk/Power	· ·		
Learning Process		-		
		62		

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 50% of the maximum marks. Minimum passing marks in SEE is 40% of the maximum marks of SEE. A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures not less than 50% (50 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- 1. Three Unit Tests each of **20 Marks**
- 2. Two assignments each of **20 Marks** or **one Skill Development Activity of 40 marks** to attain the COs and POs

The sum of three tests, two assignments/skill Development Activities, will be **scaled down to 50 marks CIE methods /question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.**

Semester End Examination:

- 1. The SEE question paper will be set for 100 marks and the marks scored will be proportionately reduced to 50.
- 2. The question paper will have ten full questions carrying equal marks.
- 3. Each full question is for 20 marks. There will be two full questions (with a maximum of four sub-questions) from each module.
- 4. Each full question will have a sub-question covering all the topics under a module.
- 5. The students will have to answer five full questions, selecting one full question from each module

Suggested Learning Resources:

Books

- 1. Kai Hwang & Narendra Jotwani, Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw Hill Education, ISBN: 978-93-392-2092-1, 3rd Edition,2016.
- 2. M.J. Flynn, Computer Architecture, Pipelined and Parallel Processor Design, Narosa Publishing, 2002
- 3. Michael J Quinn, Parallel programming in C with MPI and OpenMP, Tata McGraw Hill, 2013
- 4. Ananth Grama, An Introduction to Parallel Computing: Design and Analysis of Algorithms, Pearson, 2nd Edition,2004

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/watch?v=v7iefsovo9M&list=PLwdnzlV3ogoWJhBxBYu-K4l-q-nNHd24D</u>
- <u>https://www.youtube.com/watch?v=4goj-ajnpOQ&list=PLwdnzlV3ogoWJhBxBYu-K4l-q-nNHd24D&index=2</u>

Skill Development Activities Suggested

- 1. Interact with industry (small, medium, and large).
- 2. Involve in research/testing/projects to understand their problems and help creative and innovative methods to solve the problem.
- 3. Involve in case studies and field visits/ fieldwork.
- 4. Accustom to the use of standards/codes etc., to narrow the gap between academia and industry.
- 5. Handle advanced instruments to enhance technical talent.
- 6. Gain confidence in modelling of systems and algorithms for transient and steady-state operations, thermal study, etc.
- 7. Work on different software/s (tools) to simulate, analyze and authenticate the output to interpret and conclude.

All activities should enhance student's abilities to employment and/or self-employment opportunities, management skills, Statistical analysis, fiscal expertise, etc.

Students and the course instructor/s to involve either individually or in groups to interact together to enhance the learning and application skills of the study they have undertaken. The students with the help

Course outcome (Course Skill Set)				
At the end of the course the student will be able to :				
Sl. No.	Description	Blooms Level		
C01	Understand the basic concepts for parallel processing	L2		
CO2	Analyze program partitioning and flow mechanisms	L4		
CO3	Apply pipelining concept for the performance evaluation	L3		
CO4	Learn the advanced processor architectures for suitable applications	L1		
CO5	Understand parallel Programming	L2		

Beconfig	urable Computing	Semester	III
Course Code	22LVS331	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	10 0
Credits	03	Exam Hours	3
Examination type (SEE)	Theo		
Course objectives: This course will enable stu To learn the various Reconfi To study the different Langua To understand the Implement To learn Partial Reconfigurat To understand the Signal Pro Teaching-Learning Process (Ge These are sample Strategies, which outcomes. Chalk and Talk. Power Presentation and Flipped Classes. 4. Practice Sessions	gurable systems. ages and Compilation. tation of FPGA. ion Design cessing Applications neral Instructions) th teachers can use to accelerate the atta	ainment of the various cours	se
econfigurable Logic Devices: Field		Grained ReconfigurableArr	-
	Module-2		
flow, Debugging Reconfigurable Com nplementation: Integration, FPGA Des	Module-3	• · ·	sign
	Module-4		
	: Partial Reconfiguration Design, Bitstre ccess Design Flow, Creating Partially ns, Platform Design. (Text 2)	•	
	Module-5		
Beamforming, Software Radio, Imag	igurable computing for DSP, DSP applic e and video processing, Local Neighbo e Chip: Introduction to SoPC, Adaptive N et)	ourhood functions, Convolu	ution.
At the end of the course the stude		architecture.	

- 1. Understand the fundamental principles and practices in reconfigurable architecture.
- 2. Simulate and synthesize the reconfigurable computing architectures.
- 3. Understand the FPGA design principles, and logic synthesis

4. Integrate hardware and software technologies for reconfiguration computing focusing on partial reconfiguration design.

5. Design digital systems for a variety of applications on signal processing and system on chip configurations

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 1. The question paper will have ten questions. Each question is set for 20 marks.
- 2. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 3. The students have to answer 5 full questions, selecting one full question from each module.
- 4. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Text Books

1. Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays M. Gokhale and P. Graham Springer, ISBN: 978-0-387-26105-8 2005

2 . Introduction to Reconfigurable Computing: Architectures, Algorithms and Applications C. Bobda Springer, ISBN: 978-1-4020-6088-5 2007

Reference Books

1. Practical FPGA Programming in C D. Pellerin and S. Thibault Prentice-Hall 2005

2. FPGA Based System Design W. Wolf Prentice-Hall 2004

3. Rapid System Prototyping with FPGAs: Accelerating the Design Process R. Cofer and B. Harding Newnes 2005

Web links and Video Lectures (e-Resources):

• <u>https://in.video.search.vahoo.com/search/video; vlt=Awrx.wZl4Ypkq6UWE_mHAx.; vlu=c2VjA3NlY</u>
XJjaARzbGsDYXNzaXN0; ylc=X1MDMjExNDcyMzA0NgRfcgMyBGZyA21jYWZlZQRmcjIDc2EtZ3Atc2V
hcmNoBGdwcmlkA2NuaGlIRklzUi55VndlNThEcHUwV0EEbl9yc2x0AzAEbl9zdWdnAzkEb3JpZ2luA2l
uLnZpZGVvLnNlYXJjaC55YWhvby5jb20EcG9zAzEEcHFzdHIDTlBUIEZPUiBWSURPUyBSRUNPTkZPUk
<u>FHQUJMRSBDT01QVVRJTkcEcHFzdHJsAzM4BHFzdHJsAzQ3BHF1ZXJ5A25wdCUyMGZvciUyMHZpZG</u>
<u>VvcyUyMHJlY29uZm9yYWdhYmxlJTIwY29tcHV0aW5nJTIwZGV2aWNlcwR0X3N0bXADMTY4NjgyMz</u>
<u>I4MAR1c2VfY2FzZQM-?p=npt+for+videos+reconforagable+computing+devices&ei=UTF-8&fr2=sa-</u>
gp-
<u>search&fr=mcafee&type=E211IN1274G0#id=1&vid=046ac2290e69d7656fe0294da81a9091&action</u>
<u>=view</u>
 <u>https://in.video.search.yahoo.com/search/video; ylt=Awrx.waZ4YpkUqQWG.LmHAx.; ylu=c2VjA3Nl</u>
<u>YXJjaARzbGsDYXNzaXN0; ylc=X1MDMjExNDcyMzA0NgRfcgMyBGZyA21jYWZlZQRmcjIDc2EtZ3Atc2</u>
VhcmNoBGdwcmlkA0VPaU5zTUtGUmtlazVDSmttZ2VPcEEEbl9yc2x0AzAEbl9zdWdnAzEwBG9yaWd
pbgNpbi52aWRlby5zZWFyY2gueWFob28uY29tBHBvcwMyBHBxc3RyA25wdCBmb3IgdmlkZW9zIHJl
Y29uZm9yYWdhYmxlIGNvbXB1dGluZwRwcXN0cmwDMzkEcXN0cmwDNDcEcXVlcnkDbnB0JTIwZm
9yJTIwdmlkZW9zJTIwcmVjb25mb3JhZ2FibGUlMjBjb21wdXRpbmclMjBzeXN0ZW1zBHRfc3RtcAMxN
jg20DIzMzM2BHVzZV9jYXNlAw?p=npt+for+videos+reconforagable+computing+systems&ei=UTF-
<u>8&fr2=sa-gp-</u>
search&fr=mcafee&type=E211IN1274G0#id=1&vid=133c016852187c2eea6cfbf3f0a28dc8&action=v
iew Activity Based Learning (Suggested Activities in Class)/ Practical Based learning
Activity based Learning (Suggested Activities in Class)/ Fractical based learning
•

Pattern Reco	gnition & Machine Learning	Semester	III	
Course Code	22LVS332	CIE Marks	50	
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50	
Total Hours of Pedagogy	40	Total Marks	10 0	
Credits 03 Exam Hours				
Examination type (SEE) Theory				
 To study Supervised Learn To learn the various types To get familiar with Unsupe To learn the Probabilistic G Teaching-Learning Process (C)	raphical Models. General Instructions) hich teachers can use to accelerate the attainme	ent of the various co	ourse	
	Module-1			
troduction: Probability Theory, Mod	del Selection, The Curse of Dimensionality, Dec	cision Theory, Infor	mation	
Theory Distributions: Binary and Family, Nonparametric Methods. (0	l Multinomial Variables, The Gaussian Distr Ch.: 1,2)	ibution, The Expo	nential	
	Module-2			
Decomposition, Bayesian Linear	Regression Models : Linear Basis Function M Regression, Bayesian Model Comparison Linant Functions, Probabilistic Generative	Classification &	Linear	
	Module-3			
ipervised Learning Kernels : Dual	Representations, Constructing Kernels, Radia	Basis Function N	etwork,	
Gaussian Processes Support Vector	or Machines: Maximum Margin Classifiers, Re	elevance Vector M	achines	

Module-4

Unsupervised Learning: Mixture Models: K-means Clustering, Mixtures of Gaussians, Maximum likelihood, EM for Gaussian mixtures, Alternative View of EM. Dimensionality Reduction: Principal Component Analysis, Factor/Component Analysis, Probabilistic PCA, Kernel PCA, Nonlinear Latent Variable Models (Ch.: 9,12).

Module-5

bbabilistic Graphical Models: Bayesian Networks, Conditional Independence, Markov Random Fields, Inference in Graphical Models, Markov Model, Hidden Markov Models (Ch.:8,13)

Course outcome (Course Skill Set)

At the end of the course the student will be able to:

1. Identify areas where Pattern Recognition and Machine Learning can offer a solution.

Neural Networks: Feed-forward Network, Network Training, Error Back propagation (Ch:5,6,7).

- 2. Describe the strength and limitations of some techniques used in computational Machine Learning for classification, regression and density estimation problems.
- 3. Describe and model data.
- 4. Solve problems in Regression and Classification.
- 5. Discuss main and modern concepts for model selection and parameter estimation in recognition, decision making and statistical learning problems. **10.08.2023**

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 5. The question paper will have ten questions. Each question is set for 20 marks.
- 6. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 7. The students have to answer 5 full questions, selecting one full question from each module.
- 8. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books

1. Pattern Recognition and Machine Learning Christopher Bishop Springer 2006

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/playlist?list=PLbRMhDVUMngcx-ATexXZH -u1wsIGIiyS</u>
- <u>https://www.youtube.com/watch?v=s0ZKnU-2Sps</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Long Term Reliability	y of VLSI Systems	Semester	III
Course Code	22LVS333	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	10 0
Credits	03	Exam Hours	3
Examination type (SEE)	Theo	orv	

Course objectives:

- To Understand the Various Concepts Related To Electro migration Reliability.
- To study the Fast EM Stress Evolution Analysis.
- To study the EM Assessment for Power Grid Networks.
- To understand the Transistor Aging Effects and Reliability.
- To learn the Aging Effects in Sequential Elements.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Chalk and Talk.
- 2. Power Presentation and Videos.
- 3. Flipped Classes.
- 4. Practice Sessions

Module-1

ectro migration Reliability: Why Electromigration Reliability?,Why system-level EM Reliability Management? Physics- based EM Modeling, Electromigration Fundamentals, Stress based EM Modeling and stress diffusion equations, Modeling for transient EM effects and Initial stress conditions, post voiding stress and void volume evolution, compact physics based EM model for a single wire, other relevant EM models and analysis methods. (Text Book:1 – 1.1, 1.2, 2.1 up to 2.6, 2.9)

Module-2

Fast EM Stress Evolution Analysis: Introduction, The LTI ordinary differential equations for EM stress evolution, The presented Krylov fast EM stress analysis, Numerical results and discussions (Text. Book:1 – 3.1 up to 3.4).

Module-3

M Assessment for Power Grid Networks: New power grid reliability analysis method, cross-layout temperature and thermal stress characterization, impact of across-layout temperature and thermal stress on EM. (Text.Book:1 – 7.1, 7.2, 7.4, 7.5).

Module-4

Transistor Aging Effects and Reliability: Introduction, Transistor reliability in advanced technology nodes, Transistor Aging, BTI- Bias Temperature Instability, HCI – Hot Carrier Injection, Coupling models for BTI and HCI degradations, RTN – Random Telegraph Noise, TDDB – Time Dependent Dielectric Breakdown. (Text Book: 1 – 13.1, 13.2)

Module-5 ing Effects in Sequential Elements: Introduction, Background: flip flop timing analysis, process variation model, voltage droop model, Robustness analysis, reliability-aware flip-flop design (Text Book: 1 – 16.1 up to 16.4).

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

- 1. At the end of the course the student will be able to:
- 2. Comprehend the recent research in the area of interconnect and device reliability. 2. Determine the impact of device-level reliability on system performance, built upon physics-based models.
- 3. Understand the physics-based EM modeling.
- 4. Understand the underlying phenomena of BTI, HCI, TDDB leading to device-level reliability degradation.
- 5. Relate to considerations at the circuit-level with both combinational and sequential elements.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 9. The question paper will have ten questions. Each question is set for 20 marks.
- 10. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 11. The students have to answer 5 full questions, selecting one full question from each module.
- 12. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books

1.Long-Term Reliability of Nanometer VLSI Systems Sheldon X. D. Tan, Mehdi BaradaranTahoori, Taeyoung Kim, SamanKiamehr, Zeyu Springer International Publishing 1 st Edition, 2019 ISBN: 978-3-030-26171-9

Reference Books:

- 2. Reliability Wearout Mechanisms in Advanced CMOS Technologies Alvin Wayne Strong, Rolf-Peter Vollertsen, Timothy D. Sullivan, Ernest Y. Wu, Giuseppe La Rosa, Jordi Sune Wiley, Copyright © the Institute of Electrical and Electronics Engineers, Inc. 2009 Print ISBN:978047 1731726
- 3. Hot-carrier Reliability of MOS VLSI Circuits Yusuf Leblebici, S M Kang Springer Science & Business Media 1 st Edition, 1993
- 4. Fundamentals of ElectromigrationAware Integrated Cincost2Design Matthias Thiele, Jens Lienig Springer

International Publishing 2018

Web links and Video Lectures (e-Resources):

- <u>https://in.video.search.yahoo.com/search/video; ylt=Awrx.wZyzopkCaUWKJXmHAx.?fr=mcafee&ei=UTF-8&type=E211IN1274G0&fr2=p%3As%2Cv%3Av%2Cm%3Asp-qrw-corr-top&norw=1&p=Long+Term+Reliability+of+VLSI+Systems+nptel+videos#id=6&vid=09c65429e632f047d89e3ddddbaca53b&action=view
 </u>
- <u>https://in.video.search.yahoo.com/search/video; ylt=Awrx.wZyzopkCaUWKJXmHAx.?fr=mcafee&ei=UTF-8&type=E211IN1274G0&fr2=p%3As%2Cv%3Av%2Cm%3Asp-qrw-corr-top&norw=1&p=Long+Term+Reliability+of+VLSI+Systems+nptel+videos#id=7&vid=853453dc0d1e04a80f1416802419aa98&action=view</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

63

CMOS RF	F Circuit Design	Semester	III
Course Code	22LVS334	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	10 0
Credits	03	Exam Hours	3
Examination type (SEE)	Theory		

Course objectives:

- To Learn the RF Design, Wireless Technology and Basic Concepts.
- To understand the various Communication Concepts.
- To understand the o learn the Transceiver Architecture.
- To understand the Low Noise Amplifiers and Mixers.
- To study VCO and PLLs Oscillators.

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Chalk and Talk.
- 2. Power Presentation and Videos.
- 3. Flipped Classes.
- 4. Practice Sessions.

Module-1

troduction to RF Design, Wireless Technology and Basic Concepts: A wireless world, RF design is challenging, The big picture. General considerations, Effects of Nonlinearity, Noise, Sensitivity and dynamic range, Passive impedance transformation. Scattering parameters, Analysis of nonlinear dynamic systems, conversion of gains and distortion.

Module-2

Communication Concepts: General concepts, analog modulation, digital modulation, spectral regrowth, coherent and non-coherent detection, Mobile RF communications, Multiple access techniques, Wireless standards, Appendix 1: Differential phase shift keying.

Module-3

ansceiver Architecture: General considerations, Receiver architecture, Transmitter architectures, Direct conversion and two-step transmitters, RF testing for heterodyne, Homodyne, Image reject, Direct IF and sub sampled receivers.

Module-4

Low Noise Amplifiers and Mixers: General considerations, Problem of input matching, LNA topologies: common-source stage with inductive load, common-source stage with resistive feedback. Mixers-General considerations, passive down conversion mixers, Various mixers- working and implementation.

Module-5

O and PLLs Oscillators: Basic topologies VCO and definition of phase noise, Noise power and trade off. Resonator VCO designs, Quadrature and single sideband generators. Radio frequency Synthesizers- PLLS, Various RF synthesizer architectures and frequency dividers, Power Amplifier design.

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

1. Analyse the effect of nonlinearity and noise in RF and microwave design.

2. Exemplify the approaches taken in actual RF products.

3. Minimize the number of off-chip components required to design mixers, Low-Noise Amplifiers, VCO and PLLs.

4. Explain various receivers and transmitter topologies with their merits and drawbacks.

5. Demonstrate how the system requirements define the parameters of the circuits and the impact on the performance

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 13. The question paper will have ten questions. Each question is set for 20 marks.
- 14. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 15. The students have to answer 5 full questions, selecting one full question from each module.
- 16. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books

Text Books

1. RF Microelectronics B. Razavi PHI second edition.

Reference Books:

- 1. CMOS Circuit Design, layout and Simulation R. Jacob Baker, H.W. Li, D.E. Boyce PHI 1998.
- 2. Design of CMOS RF Integrated Circuits Thomas H. Lee Cambridge University press 1998.
- 3. Mixed Analog and Digital Devices and Technology Y.P. Tsividis TMH 1996.

Web links and Video Lectures (e-Resources):

- <u>https://www.youtube.com/watch?v=oL8SKNxEaHs&list=PLLy_2iUCG87Bdulp9brz9AcvW_TnFCUm</u>
- <u>M</u>
 <u>https://www.youtube.com/watch?v=57uTCtSQV50&list=PLH02NKv71TvsSqYwVvUCZwNkY-jUyUHdS</u>

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

•

Machine Learnin	g in VLSI CAD	Semester	III
Course Code	22LVS335	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:0:0	SEE Marks	50
Total Hours of Pedagogy	40	Total Marks	10 0
Credits	03	Exam Hours	3
Examination type (SEE)	Theo	rv	

Course objectives:

- To understand the Preliminary Taxonomy for Machine Learning in VLSI CAD.
- To study the Process Models and Neural Network Compact Patterning Models.
- To learn the Machine Learning for Mask Synthesis and Machine Learning in Physical Verification.
- To understand the design of Machine Learning in Mask Synthesis and Physical Design.
- To understand the Machine Learning for Yield and Reliability

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

1. Chalk and Talk.

2. Power Presentation and Videos.

3. Flipped Classes.

4. Practice Sessions

Module-1

Preliminary Taxonomy for Machine Learning in VLSI CAD: Machine learning taxonomy, VLSI CAD Abstraction levels (Text Book:1 – 1.1, 1.2)

achine Learning for Compact Lithographic Process Models : Introduction, Lithographic Patterning Process, Representation of Lithographic Patterning Process – Mask, Imaging, Resist & Etch Transfer Function (Text Book:1 – 2.1, 2.2).

Module-2

Machine Learning of Compact Lithographic Process Models (Cont.,) :Compact process model machine learning problem statement, CPM Task, CPM Training Experience, Performance metrics, Supervised learning of a CPM (Text. Book:1 – 2.3)

Neural Network Compact Patterning Models : Neural Network Mask Transfer Function, Neural Network Image Transfer Function, Neural Network Resist Transfer Function, Neural Network Etch Transfer Function (Text. Book:1 – 2.4).

Module-3

Machine Learning for Mask Synthesis: Introduction, Machine Learning guided OPC, MLP Construction, ML-EPC, EPC Algorithm (TextBook:1 – 3.1, 3.2, 3.2.2.2, 3.3.2, 3.3.2.4). **Machine Learning in Physical Verification**: Introduction, Machine Learning in Physical Verification – layout feature extraction & encoding, models for hotspot detection. (TextBook:1 – 4.1, 4.2)

Module-4

Machine Learning in Mask Synthesis and Physical Design: Machine Learning inMask Synthesis – mask synthesis flow, Machine Learning for sub-resolution assist features, Machine Learning for optical proximity correction. Machine Learning inPhysical Design - for datapath placement, routability driven placement, clock optimization, lithography friendly routing (Text Book: 1 – 4.3, 4.4).

Machine Learning for Manufacturing: Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications (Text Book: 1 – 5.1).

Module-5 63

chine Learning for Yield and Reliability: High-volume manufacturing yield estimation – Histogram with random sampling, Histogram with GPST-PS, Kernel density estimation. (Text Book: 1 – 5.2.11).

chine learning based aging analysis (Text Book: 1 – 9.1).

arning from limited data in VLSI CAD, Iterative feature search (PexPBook: 1 – 13.1, 13.2). Comparative study of

Assertion mining algorithms in GoldMine (Text Book: 1 – 20.1)

Course outcome (Course Skill Set)

At the end of the course, the student will be able to :

- 1. 1. Use machine learning technologies in VLSI CAD to further automate the design, verification and implementation of the most advanced chips.
- 2. 2. Relate to the usage of machine learning algorithms for Compact Lithographic Process Models
- 3. . 3. Apply Machine Learning in Mask Synthesis and Physical Verification to bear on CAD problems such as hotspot detection, efficient test generation, post-silicon measurement minimization.
- 4. 4. Predict the Yield and Reliability of VLSI chips using machine learning methods. 5. Comprehend the appropriate application of the various supervised, unsupervised and statistical learning in the various layers of chip design hierarchy.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

Continuous Internal Evaluation:

- For the Assignment component of the CIE, there are 25 marks and for the Internal Assessment Test component, there are 25 marks.
- The first test will be administered after 40-50% of the syllabus has been covered, and the second test will be administered after 85-90% of the syllabus has been covered
- Any two assignment methods mentioned in the 22OB2.4, if an assignment is project-based then only one assignment for the course shall be planned. The teacher should not conduct two assignments at the end of the semester if two assignments are planned.
- For the course, CIE marks will be based on a scaled-down sum of two tests and other methods of assessment.

Internal Assessment Test question paper is designed to attain the different levels of Bloom's taxonomy as per the outcome defined for the course.

Semester-End Examination:

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (**duration 03 hours**).

- 2. The question paper will have ten questions. Each question is set for 20 marks.
- 3. There will be 2 questions from each module. Each of the two questions under a module (with a maximum of 3 sub-questions), **should have a mix of topics** under that module.
- 4. The students have to answer 5 full questions, selecting one full question from each module.
- 5. Marks scored shall be proportionally reduced to 50 marks

Suggested Learning Resources:

Books

 Machine Learning in VLSI Computer Aided Design Editors: Ibrahim (Abe)M Elfadel, Duane SBoning, Xin Li Springer International Publishing 2019

Reference Books

- 1. Machine Learning Tom M Mitchell McGraw-Hill 1997
- 2. Machine Learning Anuradha Srinivasaraghavan, Vincy Joseph Wiley 2019

Web links and Video Lectures (e-Resources):

- <u>https://in.video.search.yahoo.com/search/video; ylt=Awrx.wZyzopkCaUWl5TmHAx.; ylu=c2VjA3Nl</u> YXJjaAR2dGlkAw; ylc=X1MDMjExNDcyMzA0NgRfcgMyBGZyA21jYWZlZQRmcjIDcDpzLHY6dixtOnNiL HJnbjp0b3AEZ3ByaWQDTVpkQjZKYWJTcVdMemVFd3A4RG5IQQRuX3JzbHQDMARuX3N1Z2cDMARv cmlnaW4DaW4udmlkZW8uc2VhcmNoLnlhaG9vLmNvbQRwb3MDMARwcXN0cgMEcHFzdHJsAzAEcX N0cmwDNDAEcXVlcnkDTWFjaGluZSUyMExlYXJuaW5nJTIwaW4lMjBWTFNJJTIwQ0FEJTIwbnB0bCU yMHZpZGVvcwR0X3N0bXADMTY4Njgx0DY3Mw?p=Machine+Learning+in+VLSI+CAD+nptl+videos& ei=UTF8&fr2=p%3As%2Cv%3Av%2Cm%3Asb%2Crgn%3Atop&fr=mcafee&type=E211IN1274G0#id =7&vid=cb7ebd6c1d4ee028490224221b16e987&action=view
 - https://in.video.search.yahoo.com/search/video; ylt=Awrx.wZyzopkCaUWl5TmHAx.; ylu=c2VjA3Nl YXJjaAR2dGlkAw; ylc=X1MDMjExNDcyMzA0NgRfcgMyBGZyA21jYWZlZQRmcjIDcDpzLHY6dixtOnNiL HJnbjp0b3AEZ3ByaWQDTVpkQjZKYWJTcVdMemVFd3A4RG5IQQRuX3JzbHQDMARuX3N1Z2cDMARv cmlnaW4DaW4udmlkZW8uc2VhcmNoLnlhaG9vLmNvbQRwb3MDMARwcXN0cgMEcHFzdHJsAzAEcX N0cmwDNDAEcXVlcnkDTWFjaGluZSUyMExlYXJuaW5nJTIwaW4lMjBWTFNJJTIwQ0FEJTIwbnB0bCU yMHZpZGVvcwR0X3N0bXADMTY4NjgxODY3Mw?p=Machine+Learning+in+VLSI+CAD+nptl+videos& ei=UTF8&fr2=p%3As%2Cv%3Av%2Cm%3Asb%2Crgn%3Atop&fr=mcafee&type=E211IN1274G0#id =12&vid=1422bb4b7e46947b5b3595efd90e117f&action=view

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

M.	TECH VLSI DESIGN & EMBEDDED S	YSTEMS (EVE)	
	ce Based Credit System (CBCS) and	l Outcome Based	
	Education(OBE)SEMESTER		
	PROJECT WORK PHASE -		100
Course Code	20LVS34	CIE Marks	100
Number of contact Hours/W		SEE Marks	
Credits	3	Exam Hours	
Course objectives:	_		
 Support independen 	-		
	itilize adequate information from var		CS.
	e work in the appropriate manner an	d present information	
(acknowledging thes			
-	communication, organisation, time m	nanagement, and presentation	skills.
 Impart flexibility and 			
 Inspire independent 			
-	capacity, credibility, judgement, intuit	tion.	
	ty, setting and meeting deadlines.		
-	s to oneself and others.		
	esent the topic of project work in a se		
	communication skill, involve in grou	p discussion to present and ex	change
ideas.	in consultation with the guide/s		
for the selected project, prep Seminar:Each student, unde Present the seminar Answer the queries a Submit two copies of The participants shall take pa	ic of the Project. Subsequently, the st are synopsis and narrate the method r the guidance of a Faculty, is require on the selected project orally and/or and involve in debate/discussion. f the typed report with a list of refere art in discussion to foster friendly and the high standards and become self-co	ology to carry out the project v d to through power point slides. nces. l stimulating environment in v	work.
Revised	L3 – Applying, L4 – Analysing, L5 –	Evaluating, L6 – Creating,	
Bloom's	- IF J G, - J G, - G	<i>b</i> , <i>c</i> = <i>b</i> .	
Taxonomy			
Level			
Course outcomes:			
At the end of the course the s	tudent will be able to:		
Demonstrate a sound	d technical knowledge of their selecte	ed project topic.	
	identification, formulation and solution		
-	solutions to complex problems utilising		
	engineers and the community at large		
	ingineers and the community at large		
	owledge, skills and attitudes of a prof		

CIE marks for the project report (50 marks), seminar (30 marks) and question and answer (20 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session by the student) by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

Choice Based C	DESIGN & EMBEDDED S redit System (CBCS) and	l Outcome Based	
	ucation(OBE)SEMESTEF Societal Project	R -III	
Course Code	22LVS35	CIE Marks	100
Number of contact Hours/Week (L:T:P)	0:0:2	SEE Marks	
Credits	03	Exam Hours/Batch	03
Course objectives:			
 To guide to organize the work in (acknowledging thesources) cle To develop interactive, commun To impart flexibility and adapta To inspire independence and tes To expand intellectual capacity, To adhere to punctuality, setting To instill responsibilities to one To train students to present the 	equate information from v n the appropriate manner arly. hication, organization, tim bility. am working. credibility, judgment, intr g and meeting deadlines. self and others. topic of project work in a	varied resources upholding ethics and present information e management, and presentation	skills. ne
Mini-Project: Each student shall involv with internal guide, co-guide, and external gu plagiarism.			
Course outcomes:			
At the end of the course the student will			
• Present the mini-project and be			
 Make links across different area ideas and information as as to as 	5 5	· · · · · · · · · · · · · · · · · · ·	
ideas and information so as to ap		-	
Habituated to critical thinking a Communicate effectively and to		coherently in both written and or	al farm
 Communicate effectively and to Work in a team to achieve a com 	imon goal.	-	ai 10111

• Learn on their own, reflect on their learning and take appropriate actions to improve it.

CIE procedure for Mini - Project:

The CIE marks awarded for Mini - Project, shall be based on the evaluation of Mini - Project Report, Project Presentation skill and Question and Answer session in the ratio 50:25:25.The marks awarded for Mini - Project report shall be the same for all the batch mates.

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (EVE) Choice Based Credit System (CBCS) and Outcome Based Education(OBE)SEMESTER -III

INTERNSHIP			
Course Code	22LVSI36	CIE Marks	40
Number of contact Hours/Week		SEE Marks	60
Credits	06	Exam Hours	03

Course objectives:

Internship/Professional practice provide students the opportunity of hands-on experience that include personal training, time and stress management, interactive skills, presentations, budgeting, marketing, liability and risk management, paperwork, equipment ordering, maintenance, responding to emergencies etc. The objectives arefurther,

- To put theory into practice.
- To expand thinking and broaden the knowledge and skills acquired through course work in the field.
- To relate to, interact with, and learn from current professionals in the field.
- To gain a greater understanding of the duties and responsibilities of a professional.
- To understand and adhere to professional standards in the field.
- To gain insight to professional communication including meetings, memos, reading, writing, publicspeaking, research, client interaction, input of ideas, and confidentiality.
- To identify personal strengths and weaknesses.
- To develop the initiative and motivation to be a self-starter and work independently.

Internship/Professional practice: Students under the guidance of internal guide/s and external guide shall take part in all the activities regularly to acquire as much knowledge as possible without causing any inconvenience atthe place of internship.

Seminar: Each student, is required to

- Present the seminar on the internship orally and/or through power point slides.
- Answer the queries and involve in debate/discussion.
- Submit the report duly certified by the external guide.
- The participants shall take part in discussion to foster friendly and stimulating environment in which thestudents are motivated to reach high standards and become self-confident.

Course outcomes:

At the end of the course the student will be able to:

- Gain practical experience within industry in which the internship is done.
- Acquire knowledge of the industry in which the internship is done.
- Apply knowledge and skills learned to classroom work.
- Develop a greater understanding about career options while more clearly defining personal career goals.
- Experience the activities and functions of professionals.
- Develop and refine oral and written communication skills.
- Identify areas for future knowledge and skill development.
- Expand intellectual capacity, credibility, judgment, intuition.
- Acquire the knowledge of administration, marketing, finance and economics.
- ٠

Continuous Internal Evaluation

CIE marks for the **Internship/Professional practice report (20 marks), seminar (10 marks) and question and answer session (10 marks)** shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session by the student) by the committee constituted for the purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

Semester End Examination

SEE marks for the **internship report (30 marks)**, **seminar (20 marks) and question and answet** 05 **session (10 marks)** shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session) by the examiners appointed by the University

M.TECH VLSI DESIGN & EMBEDDED SYSTEMS (EVE) Choice Based Credit System (CBCS) and Outcome Based Education(OBE)SEMESTER -IV

PROJECT WORK PHASE -2

Course Code	22LVS41	CIE Marks	100
Number of contact Hours/Week(L:T:P)	0:0:08	SEE Marks	100
Credits	18	Exam Hours	03

Course objectives:

- To support independent learning.
- To guide to select and utilize adequate information from varied resources maintaining ethics.
- To guide to organize the work in the appropriate manner and present information (acknowledging thesources) clearly.
- To develop interactive, communication, organization, time management, and presentation skills.
- To impart flexibility and adaptability.
- To inspire independent and team working.
- To expand intellectual capacity, credibility, judgment, intuition.
- To adhere to punctuality, setting and meeting deadlines.
- To instil responsibilities to oneself and others.
- To train students to present the topic of project work in a seminar without any fear, face audience confidently, enhance communication skill, involve in group discussion to present and exchange ideas.

Project Work Phase - II: Each student of the project batch shall involve in carrying out the project work jointly

in constant consultation with internal guide, co-guide, and external guide and prepare the project report as per thenorms avoiding plagiarism.

Course outcomes:

At the end of the course the student will be able to:

- Present the project and be able to defend it.
- Make links across different areas of knowledge and to generate, develop and evaluate ideas and information so as to apply these skills to the project task.
- Habituated to critical thinking and use problem solving skills
- Communicate effectively and to present ideas clearly and coherently in both the written and oral forms.
- Work in a team to achieve common goal.
- Learn on their own, reflect on their learning and take appropriate actions to improve it.

Continuous Internal Evaluation:

Project Report: 20 marks. The basis for awarding the marks shall be the involvement of the student in the project and in the preparation of project report. To be awarded by the internal guide in consultation with externalguide if any.

Project Presentation: 10 marks.

The Project Presentation marks of the Project Work Phase -II shall be awarded by the committee constituted forthe purpose by the Head of the Department. The committee shall consist of three faculty from the department with the senior most acting as the Chairperson.

Question and Answer: 10 marks.

The student shall be evaluated based on the ability in the Question and Answer session for 10 marks. **Semester End Examination**

SEE marks for the project report (30 marks), seminar (20 marks) and question and answer session (10 marks) shall be awarded (based on the quality of report and presentation skill, participation in the question and answer session) by the examiners appointed by the University.